

Oludayo John Oguntoyinbo

PID CONTROL OF BRUSHLESS DC
MOTOR AND ROBOT TRAJECTORY

PLANNING AND SIMULATION WITH
MATLAB®/SIMULINK®

Technology and Communication
2009

ACKNOWLEDGEMENTS

My sincere gratitude goes first to my Creator. Though it has been such a journey

academically, He has been my Sufficiency and my Help in times of need. “He

knows me well”

Mr and Mrs Oguntoyinbo, my parents, deserve all the credit for their support both

in kind and in cash; they have been there all through my life voyage prayerfully

for me. Their patience is greatly appreciated.

To my supervisor, his view that everything is simple still amazes me even when

the “stuffs” are serious nuts to crack. I am grateful for his service.

To my technical friends, Ifeta Adekunle and Frej, your technical supports are

worthy of appreciation. You made a part of my story.

To my friends and personal friend, you are worthy of my kudos.

Thank you!

Oludayo Oguntoyinbo

December, 2009

VAASAN AMMATTIKORKEAKOULU

UNIVERSITY OF APPLIED SCIENCES

Degree Programme of Information Technology

ABSTRACT

Author Oludayo John Oguntoyinbo

Title PID Control of Brushless DC Motor and Robot

Trajectory Planning Simulation with

MATLAB®/SIMULINK®

Year 2009

Language English

Pages 90 + 0 Appendices

Name of Supervisor Liu Yang

This report presents a PID model of a brushless dc (BLDC) motor and a robot
trajectory planning and simulation. A short description of the brushless dc motor
is given. For this work, mathematical models were developed and subsequently
used in getting the simulation parameters. The PID model is accomplished with
the use of MATLAB®/SIMULINK®. The operational parameters of the specific
BLDC motor were modelled using the tuning methods which are used to develop
subsequent simulations. The best PID parameters were thereafter used for the
robot trajectory and simulation over a football pitch model.

Keywords PID, BLDC motor, MATLAB/SIMULINK

3

CONTENTS
ACKNOWLEDGEMENTS .. 1

LIST OF FIGURES .. 5

LIST OF TABLES .. 7

ABBREVIATIONS AND SOME TERMS .. 8

1 INTRODUCTION .. 9

2 DC MOTOR .. 12

2.1 DC motors .. 12

3 DC MOTOR MODEL .. 14

3.1 Mathematical model of a typical DC motor ... 14

4 BRUSHLESS DC MOTOR AND MODEL CONCEPT 19

4.1 Mathematical model of a typical BLDC motor 19

5 MAXON BLDC MOTOR .. 22

5.1 Maxon EC 45 flat ∅45 mm, brushless DC motor 22

6 BLDC Maxon Motor Mathematical Model .. 23

7 OPEN LOOP ANALYSIS OF THE MAXON MOTOR MODEL 25

7.1 Open Loop Analysis using MATLAB m-file 25

7.2 Open Loop Analysis using SIMULINK ... 29

8 PID DESIGN CONCEPT ... 32

8.1 Some characteristics effects of PID controller parameters 34

8.2 PID controller design tips ... 35

9 PID CONTROLLER TUNING PARAMETERS ... 36

9.1 The PID arrangement ... 36

9.2 Trial and Error tuning methods .. 37

9.2.1 The Routh-Hurwitz stability rule .. 37
9.2.2 Proportional control .. 41
9.2.3 Proportional-Integral control ... 44
9.2.4 Proportional-Integral-Derivative control .. 47

9.3 Ziegler-Nichols tuning methods ... 54

9.4 Comparison effects of Trial and Error with Ziegler-Nichols tuning
methods ... 74

10 FOOTBALL PITCH LAYOUT MODEL ... 78

10.1 Dimensions of the Pitch .. 78

10.2 Football pitch MATLAB design implementation 79

11 ROBOT 4-WHEEL MOTOR MODEL TRAJECTORY PLANNING 84

12 CONCLUSION, CHALLENGES AND RECOMMENDATION 93

4

12.1 Conclusion .. 93

12.2 Challenges ... 93

12.3 Recommendations – Possible improvement 93

REFERENCES .. 95

APPENDIX ... 96

5

LIST OF FIGURES

Figure 2.1 – Sectional illustration of a DC motor [2] ... 12
Figure 2.2 – A dc motor operation with a thyristor arrangement using the thyristor
firing angle to vary the dc voltage [4]. .. 13
Figure 3.1 – A typical DC motor equivalent electrical circuit. 14
Figure 3.2 – A typical DC motor electromechanical system arrangement. 14
Figure 4.1 – Brushless DC motor schematic diagram ... 20
Figure 7.1 – Open Loop Step Response .. 27
Figure 7.2 – Open Loop Step Root Locus with Gain = 0, Overshoot % = 0 and
Damping = 1 for both poles .. 27
Figure 7.3 – Open Loop Step Nyquist Diagram ... 28
Figure 7.4 – Open Loop Step Bode Plot Diagram .. 28
Figure 7.5 – Open loop step response simulink arrangement 29
Figure 7.6 – Step input for the open loop simulink arrangement (at t=1) 30
Figure 7.7 – Open loop step response output for the simulink arrangement 30
Figure 7.8 – Combined step input and open loop step response span over t=0.5 s 31
Figure 8.1 – A typical system with a controller [8] .. 32
Figure 8.2 – PID parameters schematics ... 33
Figure 9.1 – PID Schematic for a full PID Controller with System model
arrangement ... 36
Figure 9.2 – PID Schematic for a full PID Controller (with saturation) and system
model arrangement .. 37
Figure 9.3 – Trial and Error PID computation diagram .. 38
Figure 9.4 – Proportional controller gain effect on the system 41
Figure 9.5 – Root locus diagram for the proportional controller gain effect 42
Figure 9.6 – Nyquist diagram for the proportional controller gain effect 42
Figure 9.7 – Bode plot for the proportional controller gain effect 43
Figure 9.8 – Trial and error value used for the P parameters output, with KI and
KD set to zero ... 43
Figure 9.9 – Trial and error value used for the P parameters output, with KI and
KD set to zero (zoomed display) .. 44
Figure 9.10 – Trial and error values used for the PI parameters output 45
Figure 9.11 – Trial and error values used for the PI parameters output with Kd=0
(zoomed) ... 45
Figure 9.12 – Trial and error values used for the PI parameters output with Ki
multiplied 1000 and Kd=0 .. 46
Figure 9.13 – Trial and error values used for the PI parameters output with Ki
multiplied 1000 and Kd=0 (zoomed) .. 46
Figure 9.14 – Trial and error method for PID – control effect on the system
response (first trial with Kd set at 0.0763) .. 47
Figure 9.15 – Trial and error method for PID – control effect on the system
response (first trial with Kd set at 0.0763, zoomed) ... 48
Figure 9.16 – Trial and error method for P, PI and PID – control effect on the
system response (t-max=0.3s) ... 51
Figure 9.17 – Trial and error method for P, PI and PID – control effect on the
system response (t-max=0.1s) ... 51

6

Figure 9.18 – Trial and error method for P, PI and PID – control effect on the
system response (t-max=0.03s) ... 52
Figure 9.19 – Trial and error method for P, PI and PID – control effect on the
system response (t-max=0.01s) ... 52
Figure 9.20 – Trial and error method for P, PI and PID – control effect on the
system response (1st zooming) .. 53
Figure 9.21 – Trial and error method for P, PI and PID – control effect on the
system response (2nd zooming) ... 53
Figure 9.22 – Trial and error method for P, PI and PID – control effect on the
system response (3rd zooming) .. 54
Figure 9.23 – Ziegler-Nichols step response tuning method [10] 55
Figure 9.24 – Ziegler-Nichols open step response plot computation 57
Figure 9.25 – Ziegler-Nichols open step response horizontally zoomed 57
Figure 9.26 – Ziegler-Nichols open step response vertically zoomed 58
Figure 9.27 – P output for the Ziegler-Nichols tuning method 61
Figure 9.28 – P output for the Ziegler-Nichols tuning method root locus output . 61
Figure 9.29 – P output for the Ziegler-Nichols tuning method Bode plot output . 62
Figure 9.30 – PI output for the Ziegler-Nichols tuning method 64
Figure 9.31 – Auto-scaled PID output for the Ziegler-Nichols tuning method 66
Figure 9.32 – Auto-scaled PID output for the Ziegler-Nichols tuning method
(zoomed overshoot point) ... 66
Figure 9.33 – PID Ziegler-Nichols tuning method Root locus diagram 67
Figure 9.34 – PID Ziegler-Nichols tuning method Nyquist diagram 67
Figure 9.35 – PID Ziegler-Nichols tuning method Bode plot diagram 68
Figure 9.36 – Closed loop PID response for P, PI and PID with t-max=0.01s 71
Figure 9.37 – Closed loop PID response for P, PI and PID with t-max=0.03 71
Figure 9.38 – Closed loop PID response for P, PI and PID with t-max=0.1 72
Figure 9.39 – Closed loop PID response for P, PI and PID with t-max=0.3 72
Figure 9.40 – Closed loop PID response for P, PI and PID (1st Zoom) 73
Figure 9.41 – Closed loop PID response for P, PI and PID (2nd Zoom) 73
Figure 9.42 – Closed loop PID response for P, PI and PID (3rd Zoom) 74
Figure 9.43 – Closed loop response for Trial and Error/Ziegler-Nichols tuning
methods ... 76
Figure 9.44 – Closed loop response for Trial and Error/Ziegler-Nichols tuning
methods (1st zoomed) .. 76
Figure 9.45 – Closed loop response for Trial and Error/Ziegler-Nichols tuning
methods (2nd zoomed, right side) .. 77
Figure 9.46 – Closed loop response for Trial and Error/Ziegler-Nichols tuning
methods (3rd zoomed, left side, with t-max=0.03) .. 77
Figure 10.1 – Dimension of the standard pitch required [12] 78
Figure 10.2 – Part label of the Football pitch layout model 79
Figure 10.3 – Generated football pitch model using
robotpatternUpdated.m .. 83
Figure 11.1 – Full robot implementation block .. 85
Figure 11.2 – An extract from “Omnidirectional control” [13] 86
Figure 11.3 – Asymmetrical robot wheel arrangement based on the
Omnidirectional robot control .. 86
Figure 11.4 – The output of the robot path plotting .. 92

7

LIST OF TABLES

Table 5.1 – BLDC motor parameters used [8] .. 22
Table 8.1 – PID controller parameter characteristics on a typical system [8] 34
Table 9.2 – Results of the Trial and Error method for PID controller parameters 48
Table 9.1 – Ziegler-Nichols PID controller parameters model [10] 55
Table 9.2 – Results of the Ziegler-Nichols method for PID controller parameters

 ... 59
Table 10.1 – Dimensions of the Football pitch layout model 78

8

ABBREVIATIONS AND SOME TERMS

BLDC Brushless Direct Current

PID Proportional, Integral and Derivative

MATLAB MATrix LABoratory

M-file MATLAB text editor file

mdl Simulink model extension

Nyquist Diagram

Bode Plot

Root Locus

State-space equation

System response

Routh-Hurwitz

Ziegler-Nichols

9

1 INTRODUCTION

The use of the general type dc motors has its long history. It has been used in the

industries for many years now. They provide simple means and precise way of

control [1]. In addition, they have high efficiency and have a high starting torque

versus falling speed characteristics which helps high starting torque and helps to

prevent sudden load rise [2]. But with such characteristics, the dc motors have

some deficiencies that needed to be attended to which gave rise to design of some

other alternative types of dc motors. For example, the lack of periodic

maintenance, mechanical wear outs, acoustic noise, sparkling, brushes effects are

some of the problems that were needed to overcome the defects in dc motors. As a

result, emphatic studies have been made on synchronous dc motors with brushless

commutators. So, current researches have been tailored towards developing

brushless direct current motors, which are fast becoming alternatives to the

conventional dc motor types. The BrushLess Direct Current (BLDC) motors are

gaining grounds in the industries, especially in the areas of appliances production,

aeronautics, medicine, consumer and industrial automations and so on.

The BLDC are typically permanent synchronous motors, they are well driven by

dc voltage. They have a commutation that is done mainly by electronics

application.

Some of the many advantages of a brushless dc motor over the conventional

“brushed dc motors are highlighted below [3]:

1. Better speed versus torque characteristics

2. High dynamic response

3. High efficiency

4. Long operating life

5. Noiseless operation

6. Higher speed ranges

7. Low maintenance (in terms of brushes cleaning; which is peculiar to the

brushed dc motors).

Another vital advantage is that the ratio of torque delivered to the size of the

motor is higher, and this contributes to its usefulness in terms of space and weight

consideration.

10

The BLDC motors come in different phases, for example, single phase, double-,

and triple- types. In depth discussion would not be made in this regards, but the

most commonly used of all these is the three phase type.

For this purpose, a brief perspective will be considered on how the BLDC motors

could be compensated in terms of control and stability. Therefore, this report

would presents a theoretical background of DC and BLDC motors, design of

simple model of basic DC motors tailored towards developing a BLDC motor

model. In addition, a brief introduction of a very essential tool of stability

determinant would also be discussed under “PID auto-tuning”. Thereafter, a

MATLAB®/SIMULINK® model of the BLDC motor would also be reported

accordingly.

The PID controller is applied in various fields of engineering, and it is also a very

important tool in telecommunication system. If there is a system and stability is

desired, then PID could be very useful.

A simple systematic approach to these tasks is given in chapter format as given

below. The chapters 2 and 3 present the “DC motor and design concepts” while

chapter 4 gives a brief introduction into the Brushless DC motor and its model

concept. It also elaborates the basic concept of their mathematical representations

in simple format. The particular BLDC motor used is a maxon motor and chapters

5 – 7 present the whole modelling idea of this specific motor and the open loop

response analysis was also included as part of the pre-analysis needed for the

subsequent control.

Also, the idea of the PID (Proportional-Integral-Derivative) controller and its

design concepts, control mechanism and tuning methods are presented under

chapters 8 and 9.

Chapters 10 – 12 present the work done on the robot trajectory planning and

simulation. The chapter 10 was used to elaborate the required standard football

pitch layout model; chapter 11, for the analysis and computation for the robot

four-wheeled motors and the chapter 12 gives the planning stages and

corresponding coding schemes.

11

The results analysis and discussion is presented under the 13th chapter; and finally

the chapter fourteen focuses on the conclusion, challenges and recommendation

and possible improvement needed in future works.

12

2 DC MOTOR

2.1 DC motors

A brief illustration and mathematical representation of DC motors will be

discussed in the section based on the general concepts of electromagnetic

induction.

The DC motors are made of a number of components; some of which are [1]:

1. Frame

2. Shaft

3. Bearings

4. Main field windings (Stator)

5. Armature (Rotor)

6. Commutator

7. Brush Assembly1

The most important part of these components that needs detail attention is the

main field and the rotating windings (the stator and the rotor respectively).

Magnet

Rotor

Brush

Commutator

Shaft

Figure 2.1 – Sectional illustration of a DC motor [2]

As shown in figure 2.1, the stator is formed by the metal carcass with a permanent

magnet enclosure which a magnetic field inside the stator windings. At one of the

1 This is a major difference between the DC and the BLDC motors

13

ends is the brush mountings and the brush gear which are used for electrical

contacts with the armature (the rotor).

The field windings are mounted on the poles pieces to create electromagnetism.

The strength of this electromagnetic field is determined by the extent of

interaction between the rotor and the stator. Also, the brushes serve as the contact-

piece for the commutator to provide electrical voltage to the motor. Consistent dirt

on the commutator causes disruption in the supply of dc voltage, which creates a

number of maintenance applications. This sometimes could lead to corrosion and

sometimes sparks between the carbon made brushes and the commutator.

One of the major challenges is the control of the speed (speed precision); but this

could be done by varying the applied voltage. Varying the supply voltage might

involve the use of a variable resistor (or a rheostat) which will be connected in

tandem with the armature to form a series connection. But this kind of

arrangement is not efficient enough as a result of power dissipation. In recent

times, solid state electronics has made its implication in this regard through the

use of controlled rectifiers and choppers. This arrangement could be efficient as

they are used for highly efficient varying dc voltage. In most cases, the most

commonly used device is the thyristor (this allows for voltage variation by

varying the firing angle of the thyristor in question) [4]. Consider the simple

arrangement in figure 2.2.

DC
Motor

Controlled
Rectifiers

Firing Circuit, with
firing angle

Control
Signal

Supply, single or
3 phases

Figure 2.2 – A dc motor operation with a thyristor arrangement using the thyristor

firing angle to vary the dc voltage [4].

14

3 DC MOTOR MODEL

3.1 Mathematical model of a typical DC motor

A typical dc motor equivalent circuit is illustrated as shown in the circuit shown

below in figure 3.1 and figure 3.2:

M

L

i

R

+

Figure 3.1 – A typical DC motor equivalent electrical circuit.

L

i

R

e=kewm

+
DC

Motor
Inertia
Load, J

Torque Angular rate

Viscous friction
Figure 3.2 – A typical DC motor electromechanical system arrangement.

The basic component represented are the armature resistance, R and the armature

inductance L; in addition, there is the back emf, e. From the in figure 3.1 and

figure 3.2 above, the following equations are used to describe the relationship of

operation.

Using the Kirchhoff’s Voltage Law, KVL, the following equation 3.1 is obtained:

 𝑉𝑉𝑠𝑠 = 𝑅𝑅𝑅𝑅 + 𝐿𝐿
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝑒𝑒 (3.1)

At steady state (DC state of zero-frequency), 𝑉𝑉𝑠𝑠 = 𝑅𝑅𝑅𝑅 + 𝑒𝑒.

15

Therefore, for the non steady-state, equation 3.1 is rearranged to make provision

for the back emf, as shown in equation 3.2 below:

 𝑒𝑒 = −𝑅𝑅𝑅𝑅 − 𝐿𝐿
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝑉𝑉𝑠𝑠 (3.2)

Where,

𝑉𝑉𝑠𝑠 = the DC Source voltage

𝑖𝑖 = the armature current

Similarly, considering the mechanical properties of the dc motor, from the

Newton’s second law of motion, the mechanical properties relative to the torque

of the system arrangement in figure 3.1 and figure 3.2 would be the product of the

inertia load, J and the rate of angular velocity, 𝜔𝜔𝑚𝑚 is equal to the sum of all the

torques; these follow with equation 3.3 and 3.4 accordingly.

 𝐽𝐽
𝑑𝑑𝜔𝜔𝑚𝑚
𝑑𝑑𝑑𝑑

= �𝑇𝑇𝑖𝑖 (3.3)

 𝑇𝑇𝑒𝑒 = 𝑘𝑘𝑓𝑓𝜔𝜔𝑚𝑚 + 𝐽𝐽
𝑑𝑑𝜔𝜔𝑚𝑚
𝑑𝑑𝑑𝑑

+ 𝑇𝑇𝐿𝐿 (3.4)

Where,

𝑇𝑇𝑒𝑒 = the electrical torque

𝑘𝑘𝑓𝑓 = the friction constant

𝐽𝐽 = the rotor inertia

𝜔𝜔𝑚𝑚 = the angular velocity

𝑇𝑇𝐿𝐿 = the supposed mechanical load2,

Where the electrical torque and the back emf could be written as:

 𝑒𝑒 = 𝑘𝑘𝑒𝑒𝜔𝜔𝑚𝑚 and 𝑇𝑇𝑒𝑒 = 𝑘𝑘𝑡𝑡𝜔𝜔𝑚𝑚 (3.5)

Where,

𝑘𝑘𝑒𝑒 = the back emf constant

𝑘𝑘𝑡𝑡 = the torque constant

Therefore, re-writing equations 3.2 and 3.3, the equation 3.6 and 3.7 are obtained,

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝑖𝑖
𝑅𝑅
𝐿𝐿
−
𝑘𝑘𝑒𝑒
𝐿𝐿
𝜔𝜔𝑚𝑚 +

1
𝐿𝐿
𝑉𝑉𝑠𝑠 (3.6)

2 this could be assumed to be zero for analysis sake

16

𝑑𝑑𝜔𝜔𝑚𝑚
𝑑𝑑𝑑𝑑

= 𝑖𝑖
𝑘𝑘𝑡𝑡
𝐽𝐽
−
𝑘𝑘𝑓𝑓
𝐽𝐽
𝜔𝜔𝑚𝑚 +

1
𝐽𝐽
𝑇𝑇𝐿𝐿 (3.7)

Using Laplace transform to evaluate the two equations 3.6 and 3.7, the following

are obtained appropriately (all initial conditions are assumed to be zero):

For equation 3.6,

 ℒ �
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝑖𝑖
𝑅𝑅
𝐿𝐿
−
𝑘𝑘𝑒𝑒
𝐿𝐿
𝜔𝜔𝑚𝑚 +

1
𝐿𝐿
𝑉𝑉𝑠𝑠� (3.8)

This implies,

 𝑠𝑠𝑠𝑠 = −𝑖𝑖
𝑅𝑅
𝐿𝐿
−
𝑘𝑘𝑒𝑒
𝐿𝐿
𝜔𝜔𝑚𝑚 +

1
𝐿𝐿
𝑉𝑉𝑠𝑠 (3.9)

For equation 3.7,

 ℒ �
𝑑𝑑𝜔𝜔𝑚𝑚
𝑑𝑑𝑑𝑑

= 𝑖𝑖
𝑘𝑘𝑡𝑡
𝐽𝐽
−
𝑘𝑘𝑓𝑓
𝐽𝐽
𝜔𝜔𝑚𝑚 +

1
𝐽𝐽
𝑇𝑇𝐿𝐿� (3.10)

This implies,

 𝑠𝑠𝜔𝜔𝑚𝑚 = 𝑖𝑖
𝑘𝑘𝑡𝑡
𝐽𝐽
−
𝑘𝑘𝑓𝑓
𝐽𝐽
𝜔𝜔𝑚𝑚 +

1
𝐽𝐽
𝑇𝑇𝐿𝐿 (3.11)

At no load (for 𝑇𝑇𝐿𝐿 = 0); equation 3.11 becomes:

 𝑠𝑠𝜔𝜔𝑚𝑚 = 𝑖𝑖
𝑘𝑘𝑡𝑡
𝐽𝐽
−
𝑘𝑘𝑓𝑓
𝐽𝐽
𝜔𝜔𝑚𝑚 (3.12)

From equation 3.12, i is made the subject for a substitute into equation 3.9.

 𝑖𝑖 =
𝑠𝑠𝜔𝜔𝑚𝑚 +

𝑘𝑘𝑓𝑓
𝐽𝐽 𝜔𝜔𝑚𝑚

𝑘𝑘𝑡𝑡
𝐽𝐽

 (3.13)

 �
𝑠𝑠𝜔𝜔𝑚𝑚 +

𝑘𝑘𝑓𝑓
𝐽𝐽 𝜔𝜔𝑚𝑚

𝑘𝑘𝑡𝑡
𝐽𝐽

� �𝑠𝑠 +
𝑅𝑅
𝐿𝐿�

= −
𝑘𝑘𝑒𝑒
𝐿𝐿
𝜔𝜔𝑚𝑚 +

1
𝐿𝐿
𝑉𝑉𝑠𝑠 (3.14)

Equation 3.14 becomes:

 ��
𝑠𝑠2𝐽𝐽
𝑘𝑘𝑡𝑡

+
𝑠𝑠𝑠𝑠𝑓𝑓
𝑘𝑘𝑡𝑡

+
𝑠𝑠𝑠𝑠𝑠𝑠
𝑘𝑘𝑡𝑡𝐿𝐿

+
𝑘𝑘𝑓𝑓𝑅𝑅
𝑘𝑘𝑡𝑡𝐿𝐿

� +
𝑘𝑘𝑒𝑒
𝐿𝐿
�𝜔𝜔𝑚𝑚 =

1
𝐿𝐿
𝑉𝑉𝑠𝑠 (3.15)

And equation 3.15 finally resolved to 3.16:

 𝑉𝑉𝑠𝑠 = �
𝑠𝑠2𝐽𝐽𝐽𝐽 + 𝑠𝑠𝑠𝑠𝑓𝑓𝐿𝐿 + 𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑘𝑘𝑓𝑓𝑅𝑅 + 𝑘𝑘𝑒𝑒𝑘𝑘𝑡𝑡

𝑘𝑘𝑡𝑡
�𝜔𝜔𝑚𝑚 (3.16)

17

The transfer function is therefore obtained as follows using the ratio of and the

angular velocity, 𝜔𝜔𝑚𝑚 to source voltage, Vs.

That is,

 𝐺𝐺(𝑠𝑠) =
𝜔𝜔𝑚𝑚
𝑉𝑉𝑠𝑠

=
𝑘𝑘𝑡𝑡

𝑠𝑠2𝐽𝐽𝐽𝐽 + 𝑠𝑠𝑠𝑠𝑓𝑓𝐿𝐿 + 𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑘𝑘𝑓𝑓𝑅𝑅 + 𝑘𝑘𝑒𝑒𝑘𝑘𝑡𝑡
 (3.17)

From these, the transfer function could be derived accordingly as follows:

That is,

 𝐺𝐺(𝑠𝑠) =
𝜔𝜔𝑚𝑚
𝑉𝑉𝑠𝑠

=
𝑘𝑘𝑡𝑡

𝑠𝑠2𝐽𝐽𝐽𝐽 + �𝑅𝑅𝑅𝑅 + 𝑘𝑘𝑓𝑓𝐿𝐿�𝑠𝑠 + 𝑘𝑘𝑓𝑓𝑅𝑅 + 𝑘𝑘𝑒𝑒𝑘𝑘𝑡𝑡
 (3.18)

Considering the following assumptions:

1. The friction constant is small, that is, 𝑘𝑘𝑓𝑓 tends to 0, this implies that;

2. 𝑅𝑅𝑅𝑅 ≫ 𝑘𝑘𝑓𝑓𝐿𝐿, and

3. 𝑘𝑘𝑒𝑒𝑘𝑘𝑡𝑡 ≫ 𝑅𝑅𝑘𝑘𝑓𝑓

And the negligible values zeroed, the transfer function is finally written as;

 𝐺𝐺(𝑠𝑠) =
𝜔𝜔𝑚𝑚
𝑉𝑉𝑠𝑠

=
𝑘𝑘𝑡𝑡

𝑠𝑠2𝐽𝐽𝐽𝐽 + 𝑅𝑅𝑅𝑅𝑅𝑅 + 𝑘𝑘𝑒𝑒𝑘𝑘𝑡𝑡
 (3.19)

So by re-arrangement and mathematical manipulation on “JL”, by multiplying top

and bottom of equation 3.19 by:
𝑅𝑅

𝑘𝑘𝑒𝑒𝑘𝑘𝑡𝑡
×

1
𝑅𝑅

Equation 3.20 is obtained after the manipulation,

𝐺𝐺(𝑠𝑠) =

1
𝑘𝑘𝑒𝑒

𝑅𝑅𝑅𝑅
𝑘𝑘𝑒𝑒𝑘𝑘𝑡𝑡

∙ 𝐿𝐿𝑅𝑅 ∙ 𝑠𝑠
2 + 𝑅𝑅𝑅𝑅

𝑘𝑘𝑒𝑒𝑘𝑘𝑡𝑡
∙ 𝑠𝑠 + 1

 (3.20)

From equation 3.13, the following constants are gotten,

The mechanical (time constant),

 𝜏𝜏𝑚𝑚 =
𝑅𝑅𝑅𝑅
𝑘𝑘𝑒𝑒𝑘𝑘𝑡𝑡

 (3.21)

18

The electrical (time constant),

 𝜏𝜏𝑒𝑒 =
𝐿𝐿
𝑅𝑅

 (3.22)

Substituting the equations 3.21 and 3.22 into equation 3.20, it yields;

 𝐺𝐺(𝑠𝑠) =

1
𝑘𝑘𝑒𝑒

𝜏𝜏𝑚𝑚 ∙ 𝜏𝜏𝑒𝑒 ∙ 𝑠𝑠2 + 𝜏𝜏𝑚𝑚 ∙ 𝑠𝑠 + 1
 (3.23)

19

4 BRUSHLESS DC MOTOR AND MODEL CONCEPT

One of the major differences between the DC motor and the BLDC is implied

from the name. The conventional DC motor has brushes that are attached to its

stator while the “brushless” DC motor does not. Also, unlike the normal DC

motor, the commutation of the BLDC could be done by electronic control [3].

Under the BLDC motor, the stator windings are energised in sequence for the

motor to rotate. More also, there is no physical contact whatsoever between the

stator and the rotor. Another vital part of the BLDC is the hall sensor(s); these hall

sensors are systematically attached to the rotor and they are used as major sensing

device by the Hall Effect sensors embedded into the stator [3]. This works based

on the principle of Hall Effect.

The BLDC motor operates in many modes (phases), but the most common is the

3-phase. The 3-phase has better efficiency and gives quite low torque. Though, it

has some cost implications, the 3-phase has a very good precision in control [6].

And this is needful in terms of control of the stator current.

4.1 Mathematical model of a typical BLDC motor

Typically, the mathematical model of a Brushless DC motor is not totally

different from the conventional DC motor. The major thing addition is the phases

involved which affects the overall results of the BLDC model. The phases

peculiarly affect the resistive and the inductive of the BLDC arrangement. For

example, a simple arrangement with a symmetrical 3-phase and “wye” internal

connection could give a brief illustration of the whole phase concept.

20

DC
Motor

Inertia
Load, J

Torque Angular rate

Viscous frictionL
R

L
R

L

R
RL-L

KeL-L

Figure 4.1 – Brushless DC motor schematic diagram

So from the equations 3.20 – 3.22, the difference in the DC and BLDC motors

will be shown.

This difference will affect primarily the mechanical and electrical constants as

they are very important parts of modelling parameters.

For the mechanical time constant (with symmetrical arrangement), equation 3.21

becomes:

 𝜏𝜏𝑚𝑚 = �
𝑅𝑅𝑅𝑅
𝐾𝐾𝑒𝑒𝐾𝐾𝑡𝑡

=
𝐽𝐽 ∑𝑅𝑅
𝐾𝐾𝑒𝑒𝐾𝐾𝑡𝑡

 (4.1)

The electrical (time constant),

 𝜏𝜏𝑒𝑒 = �
𝐿𝐿
𝑅𝑅

=
𝐿𝐿
∑𝑅𝑅

 (4.2)

Therefore, since there is a symmetrical arrangement and a three phase, the

mechanical (known) and electrical constants become:

Mechanical constant,

 𝜏𝜏𝑚𝑚 =
𝐽𝐽. 3𝑅𝑅
𝐾𝐾𝑒𝑒𝐾𝐾𝑡𝑡

 (4.3)

Electrical constant,

 𝜏𝜏𝑒𝑒 =
𝐿𝐿

3.𝑅𝑅
 (4.4)

Considering the phase effects,

21

 𝜏𝜏𝑚𝑚 =
3.𝑅𝑅∅. 𝐽𝐽

�𝐾𝐾𝑒𝑒(𝐿𝐿−𝐿𝐿)/√3�.𝐾𝐾𝑡𝑡
 (4.5)

Equation 4.5 now becomes:

 𝜏𝜏𝑚𝑚 =
3.𝑅𝑅∅. 𝐽𝐽
𝐾𝐾𝑒𝑒 .𝐾𝐾𝑡𝑡

 (4.6)

Where 𝐾𝐾𝑒𝑒 is the phase value of the EMF (voltage) constant;

𝐾𝐾𝑒𝑒 = 𝐾𝐾𝑒𝑒(𝐿𝐿−𝐿𝐿)/√3

Also, there is a relationship between 𝐾𝐾𝑒𝑒 and 𝐾𝐾𝑡𝑡 ; using the electrical power (left

hand side) and mechanical power (right hand side) equations; that is:

√3 × 𝐸𝐸 × 𝐼𝐼 =
2𝜋𝜋
60

× 𝑁𝑁 × 𝑇𝑇

𝐸𝐸
𝑁𝑁

=
𝑇𝑇
𝐼𝐼

×
2𝜋𝜋 × 1

60 × √3

𝐾𝐾𝑒𝑒 = 𝐾𝐾𝑡𝑡 ×
2𝜋𝜋 × 1

60 × √3

𝐾𝐾𝑒𝑒 = 𝐾𝐾𝑡𝑡 × 0.0605

(4.7)

Where,

𝐾𝐾𝑒𝑒 = �
v − secs

rad
� : the electrical torque

𝐾𝐾𝑡𝑡 = �
N − m

A
� : the torque constant

Therefore, the equation for the BLDC can now be obtained as follow from

equation 3.23 by considering the effects of the constants and the phase

accordingly.

 𝐺𝐺(𝑠𝑠) =

1
𝐾𝐾𝑒𝑒

𝜏𝜏𝑚𝑚 ∙ 𝜏𝜏𝑒𝑒 ∙ 𝑠𝑠2 + 𝜏𝜏𝑚𝑚 ∙ 𝑠𝑠 + 1

(4.8)

22

5 MAXON BLDC MOTOR

5.1 Maxon EC 45 flat ∅45 mm, brushless DC motor

The BLDC motor provided for this thesis is the EC 45 flat ∅45 mm, brushless, 30

Watt from Maxon motors [8]. The order number of the motor is 200142. The

parameters used in the modeling are extracted from the datasheet of this motor

with corresponding relevant parameters used. Find below in Table 5.1 the major

extracted parameters used for the modeling task.

 Maxon Motor Data Unit Value

 Values at nominal voltage

1 Nominal Voltage V 12.0

2 No load Speed rpm 4370

3 No load Current mA 151

4 Nominal Speed rpm 2860

5 Nominal Torque (max. continuous torque) mNm 59.0

6 Nominal Current (max. continuous current) A 2.14

7 Stall Torque mNm 255

8 Starting Current A 10.0

9 Maximum Efficiency % 77

 Characteristics

10 Terminal Resistance phase to phase Ω 1.20

11 Terminal Inductance phase to phase mH 0.560

12 Torque Constant mNm/A 25.5

13 Speed Constant rpm/V 37.4

14 Speed/Torque Gradient rpm/mNm 17.6

15 Mechanical time constant ms 17.1

16 Rotor Inertia gcm2 92.5

17* Number of phases 3

Table 5.1 – BLDC motor parameters used [8]

23

6 BLDC Maxon Motor Mathematical Model

The mathematical model of the BLDC motor is modelled based on the parameters

from table 5.1 using the equation 4.23. This is illustrated below:

 𝐺𝐺(𝑠𝑠) =

1
𝐾𝐾𝑒𝑒

𝜏𝜏𝑚𝑚 ∙ 𝜏𝜏𝑒𝑒 ∙ 𝑠𝑠2 + 𝜏𝜏𝑚𝑚 ∙ 𝑠𝑠 + 1

(6.1.)

So the values for 𝐾𝐾𝑒𝑒 , 𝜏𝜏𝑚𝑚 and 𝜏𝜏𝑒𝑒 need to calculated to obtain the motor model.

From equation 4.4,

𝜏𝜏𝑒𝑒 =
𝐿𝐿

3.𝑅𝑅

𝜏𝜏𝑒𝑒 =
0.560 × 10−3

3 × 1.20

 𝝉𝝉𝒆𝒆 = 155.56 × 10−6 (6.2.)

But 𝜏𝜏𝑚𝑚 is a function of R, J, 𝐾𝐾𝑒𝑒 and 𝐾𝐾𝑡𝑡 ,

Where,

R = 𝑅𝑅∅ = 1.2 Ω;

𝐽𝐽𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 92.5 gcm2 = 9.25 × 10−6 Kgm2;

𝐾𝐾𝑡𝑡 = 25.5 × 10−3Nm/A

𝜏𝜏𝑚𝑚 = 0.0171 secs

From equation 4.6, 𝐾𝐾𝑒𝑒 could be obtained:

That is,

𝝉𝝉𝒎𝒎 =
3.𝑅𝑅∅. 𝐽𝐽
𝐾𝐾𝑒𝑒 .𝐾𝐾𝑡𝑡

= 0.0171

𝑲𝑲𝒆𝒆 =
3.𝑅𝑅∅. 𝐽𝐽
𝜏𝜏𝑚𝑚 .𝐾𝐾𝑡𝑡

=
3 × 1.2 × 9.25 × 10−6

0.0171 × 25.5 × 10−3 = 0.0763
v − secs

rad

Therefore, the G(s) becomes:

𝐺𝐺(𝑠𝑠) =
13.11

155.56 × 10−6 × 0.0171 ∙ 𝑠𝑠2 + 0.0171 ∙ 𝑠𝑠 + 1

24

𝐺𝐺(𝑠𝑠) =

13.11
2.66 × 10−6 ∙ 𝑠𝑠2 + 0.0171 ∙ 𝑠𝑠 + 1

(6.3.)

The G(s) derived above in the equation 6.3 is the open loop transfer function of

the Brushless DC maxon motor using all necessarily sufficient parameters

available.

25

7 OPEN LOOP ANALYSIS OF THE MAXON MOTOR

MODEL

The open loop analysis would be done using the MATLAB®/SIMULINK®. And

the corresponding stability analysis is given likewise to see the effect thereafter

when there is closed loop system incorporation.

7.1 Open Loop Analysis using MATLAB m-file

With the aid of the BLDC motor parameters provided, the open loop analysis is

done by considering the stability factors and making the necessary plots for this

analysis. Some of the plots include the step response, root locus, nyquist diagram,

and bode plot diagram.

For this, separate m-files were created for the constants, evaluated constants

and the main files
constants.m

evaluatedconstants.m

%
% Start of code
%
% Evaluated parameters not given
%
constants
te = L/(p*R); % seconds, s, Electrical Time constant
Ke = (3*R*J)/(tm*Kt); % Back emf constant
% End of code

%
% Start of code
% Maxon flat motor parameters used in the modeling
%
% Characteristics parameters
R = 1.2; % Ohms, Terminal Resistance phase to phase
L = 0.560e-3; % Henrys, Terminal Inductance phase to phase
Kt = 25.5e-3; % Nm/A, Torque constant
Ks = 37.4 % rpm/V, Speed constant
tm = 17.1e-3; % seconds, s, Mechanical Time constant
J = 92.5e-7; % kg.m^2, Rotor inertia, given in gcm^2
p = 3; % Number of phases
%
% End of code

26

topenloop.m

%
% Start of code
%
% includes constant parameters
constants

% includes evaluated constants
evaluatedconstants

% Transfer function
G = tf([1/Ke],[tm*te tm 1]);

% Plots the Step Response diagram
figure;
step(G, 0.5);
title('Open Loop Step Response diagram');
xlabel('Time, secs')
ylabel('Voltage, volts')
grid on;

% plots the Root-locus
figure;
rlocus(G);
title('Open Loop Root Locus diagram');
grid on;

% plots the Nyquist diagram
figure;
nyquist(G);
title('Open Loop Nyquist diagram');
grid on;

% plots the Bode Plot
figure;
bode(G);
title('Open Loop Bode plot diagram 1');
grid on;

% plots the Bode Plot
figure;
bode(G,{0.1 , 100})
title('Open Loop Bode plot diagram with wider frequency spacing');
grid on;

% plots the Bode Plot
figure;
GD = c2d(G, 0.5)
bode(G,'r', GD,'b--')
title('Open Loop Bode plot diagram with discretisied response');
grid on;
% End of code

27

Figure 7.1 – Open Loop Step Response

Figure 7.2 – Open Loop Step Root Locus with Gain = 0, Overshoot % = 0 and

Damping = 1 for both poles

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

2

4

6

8

10

12

14

System: G
Time (sec): 0.097
Amplitude: 13.1

Open Loop Step Response diagram

Time, secs (sec)

Vo
lta

ge
, v

ol
ts

-7000 -6000 -5000 -4000 -3000 -2000 -1000 0 1000
-4000

-3000

-2000

-1000

0

1000

2000

3000

4000
0.160.340.50.640.760.86

0.94

0.985

0.160.340.50.640.760.86

0.94

0.985

1e+0032e+0033e+0034e+0035e+0036e+003

System: G
Gain: 0
Pole: -6.37e+003
Damping: 1
Overshoot (%): 0
Frequency (rad/sec): 6.37e+003

System: G
Gain: 0
Pole: -59
Damping: 1
Overshoot (%): 0
Frequency (rad/sec): 59

Open Loop Root Locus diagram

Real Axis

Im
ag

in
ar

y
Ax

is

28

Figure 7.3 – Open Loop Step Nyquist Diagram

Figure 7.4 – Open Loop Step Bode Plot Diagram

-2 0 2 4 6 8 10 12 14
-8

-6

-4

-2

0

2

4

6

8
0 dB

-10 dB-6 dB
-4 dB

-2 dB

10 dB6 dB
4 dB

2 dB

Open Loop Nyquist diagram

Real Axis

Im
ag

in
ar

y
Ax

is

16

18

20

22

24

M
ag

ni
tu

de
 (d

B)

10
-1

10
0

10
1

10
2

-90

-60

-30

0

Ph
as

e
(d

eg
)

Open Loop Bode plot diagram w ith w ider frequency spacing

Frequency (rad/sec)

29

7.2 Open Loop Analysis using SIMULINK

Alternatively, the open loop step response could be done by using the SIMULINK

tools as shown in figure 7.5 below.

Figure 7.5 – Open loop step response simulink arrangement

From the simulation of figure 7.5 and using a step input of at t=1, the following

were obtained.

To file 1

stepout .mat

To file

openloop .mat

Step Input Display

Step
input

Open Loop
Step Response DisplayMotor Transfer Function

13 .11

2.66e-6s +0.0171 s+12

30

Figure 7.6 – Step input for the open loop simulink arrangement (at t=1)

Figure 7.7 – Open loop step response output for the simulink arrangement

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time, t, seconds

A
m

pl
itu

de

0 0.5 1 1.5 2 2.5 3
0

2

4

6

8

10

12

14

Time, t, seconds

A
m

pl
itu

de

31

With the step response moved to 0.05 for a better display, a joint output of the

step input and open loop step response was simulated to give figure 7.8 below.

This shows the effect of the system model on the step input.

Figure 7.8 – Combined step input and open loop step response span over t=0.5 s

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

2

4

6

8

10

12

14

Time, [s]

V
ol

ta
ge

, [
vo

lts
]

Open Loop step response generated with SIMULINK

Step input
Open Loop step response

32

8 PID DESIGN CONCEPT

The Proportional-Integral-Derivative (PID) controller is about the most common

and useful algorithm in control systems engineering [7]. In most cases, feedback

loops are controlled using the PID algorithm. The main reason why feedback is

very important in systems is to be able to attain a set-point irrespective of

disturbances or any variation in characteristics of any form.

The PID controller is always designed to correct error(s) between measured

process value(s) and a particular desired set-point in a system.

A simple illustration on how the PID works is given below:

Consider the characteristics parameters – proportional (P), integral (I), and

derivative (D) controls, as applied to the diagram below in figure 8.1, the system,

S is to be controlled using the controller, C; where controller, C efficiency

depends on the P, I and D parameters [8].

CONTROLLER SYSTEMR Y
+

-

e u

Figure 8.1 – A typical system with a controller [8]

The controller provides the excitation needed by the system and it is designed to

control the overall behaviour of the system.

The PID controller has several categories of structural arrangements. The most

common of these are the series and parallel structures and in some cases, there are

the hybrid form of the series and the parallel structures.

The following shows the typical illustrative diagrams of common PID controller

structures.

Typically, the function of the form shown in equation 8.1 is applicable in this kind

of PID controller design.

 𝐾𝐾𝑃𝑃 +
𝐾𝐾𝐼𝐼
𝑠𝑠

+ 𝐾𝐾𝐷𝐷 ∙ 𝑠𝑠 =
𝐾𝐾𝐷𝐷𝑠𝑠2 + 𝐾𝐾𝑃𝑃𝑠𝑠 + 𝐾𝐾𝐼𝐼

𝑠𝑠
 (8.1)

[8].

33

Where,

𝐾𝐾𝑃𝑃 = Proportional gain

𝐾𝐾𝐼𝐼 = Integral gain

𝐾𝐾𝐷𝐷 = Derivative gain

Figure 8.2 – PID parameters schematics

Considering the figure 8.1, variable, e is the sample error, and it is the difference

between the desired input value, R and the actual output, Y. In a closed loop, e will

be sent to the controller, and the controller will perform the integral and derivative

computation on the error signal. Thereafter, the signal, u which is the output of the

controller is now equal to the sum of [the product of proportional gain, KP and the

magnitude of the error], [the product of the integral gain, KI and the integral of the

error] and [the product of the derivative gain, KD and the derivative of the error].

That is,

 𝑢𝑢 = 𝐾𝐾𝑃𝑃𝑒𝑒 + 𝐾𝐾𝐼𝐼 �𝑒𝑒𝑒𝑒𝑒𝑒 + 𝐾𝐾𝐷𝐷
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 (8.2)

The signal value, u is sent continuously to the plant with every corresponding new

output, Y being obtained as the process continues. The output, Y is sent back and

subsequently new error signal, e is found and the same process repeats itself on

and on.

34

Also, it is very typical to have the PID transfer function written in several forms

depending on the arrangement structure. The following equation shows one of

these (a parallel structure):

 𝐾𝐾𝑃𝑃 +
𝐾𝐾𝐼𝐼
𝑠𝑠

+ 𝐾𝐾𝐷𝐷 ∙ 𝑠𝑠 = 𝐾𝐾𝑃𝑃 × �1 +
1

𝑇𝑇𝐼𝐼 ∙ 𝑠𝑠
+ 𝑇𝑇𝐷𝐷 ∙ 𝑠𝑠� (8.3)

Where,

𝐾𝐾𝑃𝑃 = Proportional gain

𝑇𝑇𝐼𝐼 = Integral time or Reset time =
𝐾𝐾𝑃𝑃
𝐾𝐾𝐼𝐼

𝑇𝑇𝐷𝐷 = Derivative time or Rate time

8.1 Some characteristics effects of PID controller parameters

The proportional gain 𝐾𝐾𝑃𝑃 , will reduce the rise time and might reduce or remove

the steady-state error of the system. The integral gain 𝐾𝐾𝐼𝐼 , will eliminate the steady-

state error but it might a negative effect on the transient response (a worse

response might be produced in this case). And the derivative gain 𝐾𝐾𝐷𝐷 , will tend to

increase the stability of the system, reducing overshoot percentage, and improving

the transient response of the system. In all, the table below will give

comprehensive effects of each of the controllers on a typical closed-loop system.

Parameter Rise time Overshoot Settling time Steady-state
error

𝐾𝐾𝑃𝑃 ↓ ↑ small change ↓

 𝐾𝐾𝐼𝐼 ↓ ↑ ↑ eliminate

𝐾𝐾𝐷𝐷 small change ↓ ↓ small change

Legend ↓ Decrease

 ↑ Increase

Table 8.1 – PID controller parameter characteristics on a typical system [8]

35

The ability to blend these three parameters will make a very efficient and stable

system. It should be noted that the relationship between the three controller

parameters may not exactly be accurate because of their interdependency.

Therefore, it is very possible to compute particular parameters which effects

would be noticed on the other two.

8.2 PID controller design tips

Designing a PID controller might require some of the following steps to obtain a

more efficient and stable system [5]:

1. It is advisable to obtain the open-loop response of the system first and

subsequently determine what to improve;

2. Add a proportional gain control to improve the rising time;

3. Then, add a derivative gain to improve the overshoot percentage;

4. And perhaps, add the integral control to eliminate the steady-state error;

5. Thereafter, adjust each of the parameters might be important to achieve an

overall desired performance (or output).

And most importantly, all the three PID controller parameters might not be

necessarily used in some cases. In most cases, the tuning stops at the PI – control

combination.

More also, it should be noted that the major goal of the PID parameters is to

obtain a fast rise time with minimum overshoot and no (almost no) steady-state

error.

36

9 PID CONTROLLER TUNING PARAMETERS

Under this section a critical analysis would be done on the PID tuning criteria and

the parameters involved. Before a detail analysis is done, a quick look at the

tuning methods is considered first and thereafter, specific tuning parameters are

computed for the BLDC maxon motor. Some of the generally used tuning

methods are the Trial and Error method, the Ziegler-Nichols method (1st),

Improved Ziegler-Nichols method (2nd), Cohen-Coon method, Genetic Algorithms

and so on. For this work, the Ziegler-Nichols tuning method would be given a

priority.

9.1 The PID arrangement

As a general form, a full schematic of the PID controller arrangement with the

System model arrangement is displayed in figure 9.1 as a start for the tuning

procedure.

Figure 9.1 – PID Schematic for a full PID Controller with System model

arrangement

The figure 9.1 is under no saturation, but the saturation is included in figure 9.2.

Both figures would be used for our analysis.

To File

PIDFull .mat

System Model - Transfer Function

13 .11

2.66e-6s +0.0171 s+12
Step
input

ScopePID Controller

PID

37

Figure 9.2 – PID Schematic for a full PID Controller (with saturation) and system

model arrangement

For an initial computation, P, PI and PID would be considered in that order to

observe the best part for the PID parameters to be obtained.

9.2 Trial and Error tuning methods

This method is crude but could help in getting an overview of what the PID

parameters could be like and their effects on the whole system model. It is

particularly time consuming because of its trial and format. But a computational

stability rule was needed to set a mark for the trial and effect. This is done by

using the Routh-Hurwitz stability rule as shown below. Under this, emphasis

would be mainly on the PID combination.

9.2.1 The Routh-Hurwitz stability rule

From the various designs needed for this trial, a brief stability check is needed to

make the trial and error at the first instance. It would be observed that the only

design near the perfect (open-loop – which is without compensation or controller)

is the PID. To have a more appropriate trial and error value, the following steps

would be followed for only the PID structure.

From the PID controller equation 9.1,

To File 1

PIDSatura .mat

To File

PIDOutputResponse .mat

System Model Transfer Function

13 .11

2.66e-6s +0.0171 s+12
Step
input

Scope 1

Scope

SaturationPID Controller

PID

38

 𝐾𝐾𝑃𝑃 +
𝐾𝐾𝐼𝐼
𝑠𝑠

+ 𝐾𝐾𝐷𝐷 ∙ 𝑠𝑠 = 𝐾𝐾𝑃𝑃 × �1 +
1

𝑇𝑇𝐼𝐼 ∙ 𝑠𝑠
+ 𝑇𝑇𝐷𝐷 ∙ 𝑠𝑠� (9.1)

Similarly,

 𝐾𝐾𝑃𝑃 +
𝐾𝐾𝐼𝐼
𝑠𝑠

+ 𝐾𝐾𝐷𝐷 ∙ 𝑠𝑠 =
𝐾𝐾𝑃𝑃 ∙ 𝑠𝑠 + 𝐾𝐾𝐼𝐼 + 𝐾𝐾𝐷𝐷∙𝑠𝑠2

𝑠𝑠
 (9.2)

This is used in the m-file tclosedloopPID_TrialError4.m and it is

convuled with the motor model.

Keeping the KP part, with TI and TD set to infinity and zero respectively. A

controller gain, KC could be obtained that would sustain the oscillation output.

This value serves as the ultimate gain, KCU. For a proper oscillation, KC is set to be

less than KCU.

Assumed the figure 9.9 below with a gain of KCU and the system model:

Figure 9.3 – Trial and Error PID computation diagram

By obtaining the characteristics equation of the figure 9.9, a limiting gain could be

obtained just before sustained oscillation and this is assumed as the KCU.

Ultimate Gain , Kcu

In1 Out1

System Model - Transfer Function

13 .11

2.66e-6s +0.0171 s+12
Step
input

Scope

39

tclosedloopPID_TrialError4.m

Therefore, we have:

 1 + 𝐾𝐾𝐶𝐶𝐶𝐶 ∙ 𝐺𝐺(𝑠𝑠) = 0 (9.3)

 1 + 𝐾𝐾𝐶𝐶𝐶𝐶 ∙
13.11

2.66 × 10−6 ∙ 𝑠𝑠2 + 0.0171 ∙ 𝑠𝑠 + 1
= 0 (9.4)

% Start of code
clear
close all
% includes constant parameters
constants
% includes evaluated constants
evaluatedconstants

num = [1/Ke];
den = [tm*te tm 1];

%Ziegler-Nichols parameter computed
Kp = 13.11; %Proportional gain
Ki = 0%1310.6; %Integral gain
Kd = 0%0.0763; %Derivative gain
% For the PID equation
numc = [Kd Kp Ki];
denc = [1 0];

% convule "num with numc" and "den with demc"
numa = conv(num, numc);
dena = conv(den, denc);

% For the closed-loop transfer function, the following is obtained
% numac and denac used for the overall closed tranfer function in
this case
[numac, denac] = cloop(numa, dena);
% Plotting the new step-response
t = 0:0.00001:0.5;
step(numac, denac, t); % across 0.01 seconds timing
title('Closed loop step response for ZN - Kp, Ki and Kd');
xlabel('Time, [s]')
ylabel('Voltage, [volts]')
%grid on;

% New G1 for overall closed loop trasnfer function
G1 = tf(numac, denac);
% End of code

40

Equation 9.4 becomes,

 2.66 × 10−6 ∙ 𝑠𝑠2 + 0.0171 ∙ 𝑠𝑠 + 1 + 13.11 ∙ 𝐾𝐾𝐶𝐶𝐶𝐶 = 0 (9.5)

So for stability purposes, KCU’s range of values could be obtained by using the

Routh-Hurwitz condition of stability. This is computed below:

𝑠𝑠2 2.66 × 10−6 1 + 13.11 ∙ 𝐾𝐾𝐶𝐶𝐶𝐶
𝑠𝑠1 0.0171 0

𝑠𝑠0 𝟏𝟏 + 𝟏𝟏𝟏𝟏.𝟏𝟏𝟏𝟏 ∙ 𝑲𝑲𝑪𝑪𝑪𝑪 −

According to Routh-Hurwitz condition, the obtained characteristics equation 9.5

should be spread into column as shown above and the s0 is evaluated as follows

(because it has the assumed unknown KCU which would be evaluated):

 s0(1st row) = −
�2.66 × 10−6 1 + 13.11 ∙ 𝐾𝐾𝐶𝐶𝐶𝐶

0.0171 0
�

1 + 13.11 ∙ 𝐾𝐾𝐶𝐶𝐶𝐶

s0(1st row)

= −
(2.66 × 10−6 × 0) − (1 + 13.11 ∙ 𝐾𝐾𝐶𝐶𝐶𝐶)(0.0171)

0.0171
= 1 + 13.11 ∙ 𝐾𝐾𝐶𝐶𝐶𝐶

For stability sake, the 1st column after the s-column must not have any sign

change (that is, no change from + to – or – to +). Therefore, s0(1st row), must be

greater than zero.

This implied that,

1 + 13.11 ∙ 𝐾𝐾𝐶𝐶𝐶𝐶 > 0

Then,

13.11 ∙ 𝐾𝐾𝐶𝐶𝐶𝐶 > −1

𝐾𝐾𝐶𝐶𝐶𝐶 >
−1

13.11
= −0.0763

41

This implies that KCU has its main value in the positive range. With a rough trial

and error tuning, KP, can be fixed to full value of the system model numerator,

which is 13.11. The KI and KD were set initially to zero to see the effect of the KP

on the system. This resulted into the figure KI about the inverse of 0.0763 =

13.106, and KD = 0.0763. After this,

9.2.2 Proportional control

Based on the M-file – “tclosedloopP.m”, the following figure 9.3, figure 9.4,

figure 9.5 and figure 9.6 were obtained as an improvement to the open-loop

system. By making an initial raw guess of the value of KP just before applying the

Routh-Hurwitz condition.

Figure 9.4 – Proportional controller gain effect on the system

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
-3

0

0.2

0.4

0.6

0.8

1

1.2

1.4
New step response w ith proportion, P control; Kp = 10

Time, secs (sec)

Vo
lta

ge
, v

ol
ts

42

Figure 9.5 – Root locus diagram for the proportional controller gain effect

Figure 9.6 – Nyquist diagram for the proportional controller gain effect

-6000 -5000 -4000 -3000 -2000 -1000 0 1000
-3

-2

-1

0

1

2

3
x 10

4

0.0420.0650.0950.1350.2

0.3

0.55

5e+003

1e+004

1.5e+004

2e+004

2.5e+004

5e+003

1e+004

1.5e+004

2e+004

2.5e+004

0.020.0420.0650.0950.1350.2

0.3

0.55

0.02

Closed Loop Root Locus diagram

Real Axis

Im
ag

in
ar

y
Ax

is

-1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5
0 dB

-20 dB

-10 dB

-6 dB

-4 dB

-2 dB

20 dB

10 dB

6 dB

4 dB

2 dB

Closed Loop Nyquist diagram

Real Axis

Im
ag

in
ar

y
Ax

is

43

Figure 9.7 – Bode plot for the proportional controller gain effect

Figure 9.8 – Trial and error value used for the P parameters output, with KI and

KD set to zero

-0.0665

-0.066

-0.0655

-0.065
M

ag
ni

tu
de

 (d
B)

10
-1

10
0

10
1

10
2

-0.8

-0.6

-0.4

-0.2

0

Ph
as

e
(d

eg
)

Closed Loop Bode plot diagram w ith w ider frequency spacing

Frequency (rad/sec)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Closed loop step response for ZN - Kp, Ki and Kd

Time, [s] (sec)

Vo
lta

ge
, [

vo
lts

]

44

Figure 9.9 – Trial and error value used for the P parameters output, with KI and

KD set to zero (zoomed display)

The above figure 9.3 – 9.7 show how the proportional controller has reduced the

rising time and the steady-state error, the overshoot is reasonably increased but

the settling time is also decreased slightly. The subsequent figures show the

effects of the trial and error method of tuning applied. The detail analysis would

be under the results and analysis section.

9.2.3 Proportional-Integral control

To improve on effect of the KP, an additional KI was also set based on the Routh-

Hurwitz condition used above. This is implemented with the same m-file –

“tclosedloopPID_TrialError4.m”, the following figures 9.10 – 9.11

was obtained as an added improvement. To make a more visible on the step

response, the integral parameter was scaled by 1000 to see its effects, that is, KI=

1310.6. And another “supposed” improvement was also obtained (figures 9.12 –

9.13).

-0.02 0 0.02 0.04 0.06 0.08

0.8

0.9

1

1.1

1.2

1.3

Closed loop step response for ZN - Kp, Ki and Kd

Time, [s] (sec)

Vo
lta

ge
, [

vo
lts

]

45

Figure 9.10 – Trial and error values used for the PI parameters output

Figure 9.11 – Trial and error values used for the PI parameters output with Kd=0

(zoomed)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Closed loop step response for ZN - Kp, Ki and Kd

Time, [s] (sec)

Vo
lta

ge
, [

vo
lts

]

-0.01 0 0.01 0.02 0.03 0.04 0.05

0.7

0.8

0.9

1

1.1

1.2

Closed loop step response for ZN - Kp, Ki and Kd

Time, [s] (sec)

Vo
lta

ge
, [

vo
lts

]

46

Figure 9.12 – Trial and error values used for the PI parameters output with Ki

multiplied 1000 and Kd=0

Figure 9.13 – Trial and error values used for the PI parameters output with Ki

multiplied 1000 and Kd=0 (zoomed)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Closed loop step response for ZN - Kp, Ki and Kd

Time, [s] (sec)

Vo
lta

ge
, [

vo
lts

]

-5 0 5 10 15 20 25

x 10
-3

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

Closed loop step response for ZN - Kp, Ki and Kd

Time, [s] (sec)

Vo
lta

ge
, [

vo
lts

]

47

9.2.4 Proportional-Integral-Derivative control

But for a more critical assessment of the trial and error method, the M-file –

“tclosedloopPID_TrialError4.m”, was used to obtain a more perfect

output for the system response as shown in the following figure 9.8. Though, all

the PID parameters might not be needed sometimes, but it needful to examine it to

check the effect and the difference from the other P and PI combinations. For the

implementation of the PID guessed parameters based in the trial and error, the KI

and KD were set to 1310.6 and 0.0763 respectively. On the first trial the figure –

was obtained.

 Figure 9.14 – Trial and error method for PID – control effect on the system

response (first trial with Kd set at 0.0763)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Closed loop step response for ZN - Kp, Ki and Kd

Time, [s] (sec)

Vo
lta

ge
, [

vo
lts

]

48

Figure 9.15 – Trial and error method for PID – control effect on the system
response (first trial with Kd set at 0.0763, zoomed)

The trial and error gave a reasonable level comfort but it is time consuming and

requires extra techniques to be able to have guesses that are appropriate and near

efficient.

For an overall assessment of the P, PI and PID parameters effect, the following

figure was generated for appropriate comparison effects using the

UpdatedPPIPID_TrialError.m.

 PID Type 𝐾𝐾𝑃𝑃 𝐾𝐾𝐼𝐼 𝐾𝐾𝐷𝐷

1. P 13.11 0 0

2. PI 13.11 1310.6 0

3. PID 13.11 1310.6 0.0763

Table 9.1 – Results of the Trial and Error method for PID controller parameters

-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05 0.06

0.8

0.85

0.9

0.95

1

1.05

1.1

Closed loop step response for ZN - Kp, Ki and Kd

Time, [s] (sec)

Vo
lta

ge
, [

vo
lts

]

49

UpdatedPPIPID_TrialError.m

% Start of code
clear
close all

% includes constant parameters
constants
% includes evaluated constants
evaluatedconstants
num = 1/Ke;
den = [tm*te tm 1];

%----P starts
% assumed Kp = 13.11
Kp1 = 13.11;
numa1 = Kp1 * num;
dena1 = den;

% For the closed-loop transfer function, the following is obtained
% numac and denac used for the overall closed tranfer function in
this case
[numac1, denac1] = cloop(numa1, dena1);
%----P ends

%----PI Starts
%Trial and Error tuning parameter Kp and Ki
Kp2 = 13.11;
Ki2 = 1310.6;

% For the PI equation
numc2 = [Kp2 Ki2];
denc2 = [1 0];

% convule "num with numc" and "den with demc"
numa2 = conv(num, numc2);
dena2 = conv(den, denc2);

% For the closed-loop transfer function, the following is obtained
% numac and denac used for the overall closed tranfer function in
this case
[numac2, denac2] = cloop(numa2, dena2);
%----PI ends

%----PID Starts
%Trial and Error parameter guessed with support of RH
Kp3 = 13.11; %Proportional gain
Ki3 = 1310.6; %Integral gain
Kd3 = 0.0763; %Derivative gain
% For the PID equation
numc3 = [Kd3 Kp3 Ki3];
denc3 = [1 0];

50

UpdatedPPIPID_TrialError.m (contd.)

% convule "num with numc" and "den with demc"
numa3 = conv(num, numc3);
dena3 = conv(den, denc3);

% For the closed-loop transfer function, the following is obtained
% numac and denac used for the overall closed tranfer function in
this case
[numac3, denac3] = cloop(numa3, dena3);
%----PID ends

% Plotting the new step-response
t = 0:0.00001:0.01;

% New G1 for overall closed loop transfer function
G1 = tf(numac1, denac1);

G2 = tf(numac2, denac2);

G3 = tf(numac3, denac3);

% Plots the Step Response diagram
figure;
hold on
step(G1, t);
hold on
step(G2, t);
hold on
step(G3, t);
legend('P', 'PI', 'PID');
title('Closed Loop PID Trial and Error step response generated for

51

Figure 9.16 – Trial and error method for P, PI and PID – control effect on the

system response (t-max=0.3s)

Figure 9.17 – Trial and error method for P, PI and PID – control effect on the

system response (t-max=0.1s)

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Closed Loop PID Trial and Error step response generated for P, PI and PID combinations

Time, [s] (sec)

Vo
lta

ge
, [

vo
lts

]

P
PI
PID

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Closed Loop PID Trial and Error step response generated for P, PI and PID combinations

Time, [s] (sec)

Vo
lta

ge
, [

vo
lts

]

P
PI
PID

52

Figure 9.18 – Trial and error method for P, PI and PID – control effect on the

system response (t-max=0.03s)

Figure 9.19 – Trial and error method for P, PI and PID – control effect on the

system response (t-max=0.01s)

0 0.005 0.01 0.015 0.02 0.025 0.03
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Closed Loop PID Trial and Error step response generated for P, PI and PID combinations

Time, [s] (sec)

Vo
lta

ge
, [

vo
lts

]

P
PI
PID

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Closed Loop PID Trial and Error step response generated for P, PI and PID combinations

Time, [s] (sec)

Vo
lta

ge
, [

vo
lts

]

P
PI
PID

53

Figure 9.20 – Trial and error method for P, PI and PID – control effect on the

system response (1st zooming)

Figure 9.21 – Trial and error method for P, PI and PID – control effect on the

system response (2nd zooming)

0 1 2 3 4 5

x 10
-3

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Closed Loop PID Trial and Error step response generated for P, PI and PID combinations

Time, [s] (sec)

Vo
lta

ge
, [

vo
lts

]

P
PI
PID

-5 0 5 10 15 20

x 10
-4

0.6

0.7

0.8

0.9

1

1.1

1.2

Closed Loop PID Trial and Error step response generated for P, PI and PID combinations

Time, [s] (sec)

Vo
lta

ge
, [

vo
lts

]

P
PI
PID

54

Figure 9.22 – Trial and error method for P, PI and PID – control effect on the

system response (3rd zooming)

9.3 Ziegler-Nichols tuning methods

The Ziegler-Nichols method used was done based on obtaining the open loop

transfer function and thereafter obtaining the necessary parameter values needed

for the various evaluation of the P, PI and PID parameters. The steps taken

involve the files topenloop.m used in conjunction with the openloop.mdl

model. So, for the Ziegler-Nichols method analysis the m-file

topenloop_zn.m was used accordingly.

The open loop step response is characterized by two main parameters, the L

(delay time parameter) and T (time constant). These two parameters are computed

by drawing tangents to the open loop step response at its point of inflections

(basically two points. The inflection points are particularly done so that there

would be an intersection with the vertical (voltage axis, which correlates with the

steady-state value) and horizontal (time axis) axes.

0 2 4 6 8 10 12 14 16 18

x 10
-4

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

Closed Loop PID Trial and Error step response generated for P, PI and PID combinations

Time, [s] (sec)

Vo
lta

ge
, [

vo
lts

]
P
PI
PID

55

Based on the Ziegler-Nichols, the following were derived to obtain the control

parameters based on the required model:

 PID Type 𝐾𝐾𝑃𝑃 𝑇𝑇𝐼𝐼 =
𝐾𝐾𝑃𝑃
𝐾𝐾𝐼𝐼

 𝑇𝑇𝐷𝐷 =
𝐾𝐾𝐷𝐷
𝐾𝐾𝑃𝑃

1. P 𝑇𝑇
𝐿𝐿

 ∞ 0

2. PI 0.9× 𝑇𝑇
𝐿𝐿
 𝐿𝐿

0.3
 0

3. PID 1.2× 𝑇𝑇
𝐿𝐿
 2 × 𝐿𝐿 0.5× 𝐿𝐿

Table 9.2 – Ziegler-Nichols PID controller parameters model [10]

Figure 9.23 – Ziegler-Nichols step response tuning method [10]

From the figure 9.23, the target is on how to evaluate the two parameters (L and

T) needed. This is done as follows with the illustration.

56

topenloop_zn.m

%
% Start of code
%
% includes constant parameters
clear
close all

%motor constants
constants

% includes evaluated constants
evaluatedconstants

% Transfer function
G = tf([1/Ke],[tm*te tm 1]);

% Plots the Step Response diagram
figure;
step(G, 0.5);
title('Open Loop Step Response diagram');
xlabel('Time, secs')
ylabel('Voltage, volts')
%grid on;

format long
load openloop.mat
coeff_x=polyfit([6 10 12],openloop(2,[6 10 12]),1)
coeff_y=polyfit([700:900],openloop(2,[700:900]),1)

for n=1:100
 zn_line_x(n)=coeff_x(1)*n+coeff_x(2);
end

for n=1:900
 zn_line_y(n)=coeff_y(1)*n+coeff_y(2);
end

figure(2)
hold on
plot(openloop(2,:),'red')
plot(zn_line_x);
plot((zn_line_y), 'green');
legend('1step response','line');
grid on
axis([0 400 0 14]);
l=length(openloop(2,:))
L_samples=roots(coeff_x)

%inflecton_point=intersect(zn_line_x,zn_line_y)
[a,b,c]=intersect(zn_line_x,zn_line_y)

% End of code

57

Figure 9.24 – Ziegler-Nichols open step response plot computation

Figure 9.25 – Ziegler-Nichols open step response horizontally zoomed

0 50 100 150 200 250 300 350 400
0

2

4

6

8

10

12

14

Time, secs

V
ol

ta
ge

, v
ol

ts

Ziegler-Nichols Open Loop Step Response diagram

step response
line intercept with t, axis
line intercept with voltage, axis

3.75 3.8 3.85 3.9 3.95 4 4.05 4.1 4.15 4.2

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

Time, secs

V
ol

ta
ge

, v
ol

ts

Ziegler-Nichols Open Loop Step Response diagram

step response
line intercept with t, axis
line intercept with voltage, axis

58

Figure 9.26 – Ziegler-Nichols open step response vertically zoomed

Therefore, from the figure 9.24, figure 9.25 and figure 9.26, the values of the L

and T could be computed as follows:

An assumed sample rate of 1000 was used for the topenloop_zn.m plots

Point of interception of the horizontal line ≈ 4.1 (voltage = 0)

Coordinate of the point of interception of the two lines ≈ (T*, K) = (42.7987,

13.1101);

Where,

T* is horizontal trace of the interception on the tangent lines drawn

L = 4.1;

K = 13.1101;

T = T* – L = 4.1 = 42.7987 - 38.6987 ≈ 38.70

This implies that we have:

L = 0.0041;

K = 13.1101;

T = 0.0387

42.7987 42.7987 42.7987 42.7987 42.7987 42.7987 42.7987

13.1101

13.1101

13.1101

13.1101

13.1101

13.1101

13.1101

Time, secs

V
ol

ta
ge

, v
ol

ts

Ziegler-Nichols Open Loop Step Response diagram

step response
line intercept with t, axis
line intercept with voltage, axis

59

With the above computation, the P, PI and PID computation was done to get the

best suited parameters combination desired.

So the updated table 9.1 would be table 9.2 shown below:

 PID Type 𝐾𝐾𝑃𝑃 𝑇𝑇𝐼𝐼 =
𝐾𝐾𝑃𝑃
𝐾𝐾𝐼𝐼

 𝑇𝑇𝐷𝐷 =
𝐾𝐾𝐷𝐷
𝐾𝐾𝑃𝑃

1. P 9.439 ∞ 0

2. PI 8.495 0.0137 0

3. PID 11.327 0.0082 0.00205

Table 9.3 – Results of the Ziegler-Nichols method for PID controller parameters

From table 9.2, the following parameters are obtained based on the equation

format (from equation 7.3 above) to become equation 9.1 below:

For P only,

 𝐾𝐾𝑃𝑃 +
𝐾𝐾𝐼𝐼
𝑠𝑠

+ 𝐾𝐾𝐷𝐷 ∙ 𝑠𝑠 = 9.439 +
𝐾𝐾𝐼𝐼
𝑠𝑠

+ 𝐾𝐾𝐷𝐷 ∙ 𝑠𝑠 (9.1)

For PI only,

 𝐾𝐾𝑃𝑃 +
𝐾𝐾𝐼𝐼
𝑠𝑠

+ 𝐾𝐾𝐷𝐷 ∙ 𝑠𝑠 = 8.495 +
620.07
𝑠𝑠

+ 𝐾𝐾𝐷𝐷 ∙ 𝑠𝑠 (9.2)

For PID only,

 𝐾𝐾𝑃𝑃 +
𝐾𝐾𝐼𝐼
𝑠𝑠

+ 𝐾𝐾𝐷𝐷 ∙ 𝑠𝑠 = 11.327 +
1381.34

𝑠𝑠
+ 0.0232 ∙ 𝑠𝑠 (9.3)

Using the figure 9.1 (above) and m-file tclosedloopP_zn.m,

tclosedloopPI_zn.m and tclosedloopPID_zn.m, the outputs of the

various PID combinations could be obtained as given below:

60

tclosedloopP_zn.m

%start of code
clear
close all

% includes constant parameters
constants
% includes evaluated constants
evaluatedconstants

num = 1/Ke;
den = [tm*te tm 1];

% assumed Kp = 10
Kp = 9.439;
numa = Kp * num;
dena = den;

% For the closed-loop transfer function, the following is obtained
% numac and denac used for the overall closed transfer function in
this case
[numac, denac] = cloop(numa, dena);

% Plotting the new step-response
t = 0:0.00001:0.005
step(numac, denac, t); % across 0.01 seconds timing
title('Closed step response with proportion, P control; Kp =
9.439');
xlabel('Time, [s]')
ylabel('Voltage, [volts]')
grid on;

% New G1 for overall closed loop trasnfer function
G1 = tf(numac, denac);

% plots the Root-locus
figure;
rlocus(G1);
title('Closed Loop Root Locus diagram');
grid on;

% plots the Nyquist diagram
figure;
nyquist(G1);
title('Closed Loop Nyquist diagram');
grid on;

% plots the Bode Plot
figure;
bode(G1,{0.1 , 100})
title('Closed Loop Bode plot diagram with wider frequency
spacing');
grid on;

%end of code

61

Figure 9.27 – P output for the Ziegler-Nichols tuning method

Figure 9.28 – P output for the Ziegler-Nichols tuning method root locus output

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
-3

0

0.2

0.4

0.6

0.8

1

1.2

1.4
Closed step response w ith proportion, P control; Kp = 9.439

Time, [s] (sec)

Vo
lta

ge
, [

vo
lts

]

-6000 -5000 -4000 -3000 -2000 -1000 0 1000
-3

-2

-1

0

1

2

3
x 10

4

0.0420.0650.0950.1350.2

0.3

0.55

5e+003

1e+004

1.5e+004

2e+004

2.5e+004

5e+003

1e+004

1.5e+004

2e+004

2.5e+004

0.020.0420.0650.0950.1350.2

0.3

0.55

0.02

Closed Loop Root Locus diagram

Real Axis

Im
ag

in
ar

y
Ax

is

62

Figure 9.29 – P output for the Ziegler-Nichols tuning method Bode plot output

-0.07

-0.0695

-0.069

-0.0685
M

ag
ni

tu
de

 (d
B)

10
-1

10
0

10
1

10
2

-0.8

-0.6

-0.4

-0.2

0

Ph
as

e
(d

eg
)

Closed Loop Bode plot diagram w ith w ider frequency spacing

Frequency (rad/sec)

63

tclosedloopPI_zn.m

% Start of code
clear
close all
% includes constant parameters
constants
% includes evaluated constants
evaluatedconstants
num = 1/Ke;
den = [tm*te tm 1];

%Ziegler-Nichol tuning parameter Kp and Ki
Kp = 8.495;
Ki = 620.07;

% For the PI equation
numc = [Kp Ki];
denc = [1 0];
% convule "num with numc" and "den with demc"
numa = conv(num, numc);
dena = conv(den, denc);

% For the closed-loop transfer function, the following is obtained
% numac and denac used for the overall closed tranfer function in
this case
[numac, denac] = cloop(numa, dena);

% Plotting the new step-response
t = 0:0.00001:0.005
step(numac, denac, t); % across 0.01 seconds timing
title('Closed step response with proportion, P control; Kp = 8.495
and Ki = 620.07');
xlabel('Time, [s]')
ylabel('Voltage, [volts]')
grid on;

% New G1 for overall closed loop trasnfer function
G1 = tf(numac, denac);
% plots the Root-locus
figure;
rlocus(G1);
title('Closed Loop Root Locus diagram');
grid on;
% plots the Nyquist diagram
figure;
nyquist(G1);
title('Closed Loop Nyquist diagram');
grid on;
% plots the Bode Plot
figure;
bode(G1,{0.1 , 100})
title('Closed Loop Bode plot diagram with wider frequency
spacing');
grid on;
%end of code

64

Figure 9.30 – PI output for the Ziegler-Nichols tuning method

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
-3

0

0.2

0.4

0.6

0.8

1

1.2

1.4
Closed step response w ith proportion, P control; Kp = 8.495 and Ki = 620.07

Time, [s] (sec)

Vo
lta

ge
, [

vo
lts

]

65

tclosedloopPID_zn.m

% Start of code
% includes constant parameters
constants
% includes evaluated constants
evaluatedconstants
num = 1/Ke;
den = [tm*te tm 1];

%Ziegler-Nichols parameter computed
Kp = 11.327; %Proportional gain
Ki = 1381.34; %Integral gain
Kd = 0.0232; %Derivative gain

% For the PID equation
numc = [Kd Kp Ki];
denc = [1 0];

% convule "num with numc" and "den with demc"
numa = conv(num, numc);
dena = conv(den, denc);

% For the closed-loop transfer function, the following is obtained
% numac and denac used for the overall closed tranfer function in
this case
[numac, denac] = cloop(numa, dena);

% Plotting the new step-response
t = 0:0.00001:0.3;
step(numac, denac, t); % across 0.01 seconds timing
title('Closed loop step response for ZN - Kp, Ki and Kd');
xlabel('Time, [s]')
ylabel('Voltage, [volts]')
%grid on;

% New G1 for overall closed loop trasnfer function
G1 = tf(numac, denac);

% plots the Root-locus
figure;
rlocus(G1);
title('Closed Loop Root Locus diagram');
grid on;
% plots the Nyquist diagram
figure;
nyquist(G1);
title('Closed Loop Nyquist diagram');
grid on;
% plots the Bode Plot
figure;
bode(G1,{0.1 , 100})
title('Closed Loop Bode plot diagram with wider frequency
spacing');
grid on;
%% End of code

66

Figure 9.31 – Auto-scaled PID output for the Ziegler-Nichols tuning method

Figure 9.32 – Auto-scaled PID output for the Ziegler-Nichols tuning method

(zoomed overshoot point)

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Closed loop step response for ZN - Kp, Ki and Kd

Time, [s] (sec)

Vo
lta

ge
, [

vo
lts

]

-0.005 0 0.005 0.01 0.015 0.02 0.025 0.03

0.85

0.9

0.95

1

1.05

Closed loop step response for ZN - Kp, Ki and Kd

Time, [s] (sec)

Vo
lta

ge
, [

vo
lts

]

67

Figure 9.33 – PID Ziegler-Nichols tuning method Root locus diagram

Figure 9.34 – PID Ziegler-Nichols tuning method Nyquist diagram

-2.5 -2 -1.5 -1 -0.5 0 0.5

x 10
5

-1.5

-1

-0.5

0

0.5

1

1.5
x 10

4

0.999

1

1

0.860.9650.9860.9930.9960.998

0.999

1

1
5e+0041e+0051.5e+0052e+005

0.860.9650.9860.9930.9960.998

Closed Loop Root Locus diagram

Real Axis

Im
ag

in
ar

y
Ax

is

-1 -0.5 0 0.5 1 1.5
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5
0 dB

-20 dB

-10 dB

-6 dB-4 dB-2 dB

20 dB

10 dB

6 dB4 dB2 dB

Closed Loop Nyquist diagram

Real Axis

Im
ag

in
ar

y
Ax

is

68

Figure 9.35 – PID Ziegler-Nichols tuning method Bode plot diagram

For a combined comparison of the Ziegler-Nichols tuning methods for the P, PI

and PID, a separate m-file, UpdatedPPIPID_znj.m was created to execute

the combination and this was done over different time spans (0.01, 0.03, 0.1 and

0.3). The various outputs figures are shown in figures 9.23, 9.24, 9.25 and 9.26.

0

0.005

0.01

0.015

0.02

0.025

M
ag

ni
tu

de
 (d

B)

10
-1

10
0

10
1

10
2

-0.8

-0.6

-0.4

-0.2

0

Ph
as

e
(d

eg
)

Closed Loop Bode plot diagram w ith w ider frequency spacing

Frequency (rad/sec)

69

UpdatedPPIPID_znj.m

%
% Start of code
%
clear
close all

% includes constant parameters
constants
% includes evaluated constants
evaluatedconstants
num = 1/Ke;
den = [tm*te tm 1];

%----P starts
% assumed Kp = 10
Kp1 = 9.439;
numa1 = Kp1 * num;
dena1 = den;

% For the closed-loop transfer function, the following is obtained
% numac and denac used for the overall closed tranfer function in
this case
[numac1, denac1] = cloop(numa1, dena1);
%----P ends

%----PI Starts
%Ziegler-Nichols parameter computed
%Ziegler-Nichol tuning parameter Kp and Ki
Kp2 = 8.495;
Ki2 = 620.07;

% For the PI equation
numc2 = [Kp2 Ki2];
denc2 = [1 0];

% convule "num with numc" and "den with demc"
numa2 = conv(num, numc2);
dena2 = conv(den, denc2);

% For the closed-loop transfer function, the following is obtained
% numac and denac used for the overall closed tranfer function in
this case
[numac2, denac2] = cloop(numa2, dena2);
%----PI ends

%----PID Starts
%Ziegler-Nichols parameter computed
Kp3 = 11.327; %Proportional gain
Ki3 = 1381.34; %Integral gain
Kd3 = 0.0232; %Derivative gain

70

UpdatedPPIPID_znj.m (contd.)

% For the PID equation
numc3 = [Kd3 Kp3 Ki3];
denc3 = [1 0];

% convule "num with numc" and "den with demc"
numa3 = conv(num, numc3);
dena3 = conv(den, denc3);

% For the closed-loop transfer function, the following is obtained
% numac and denac used for the overall closed tranfer function in
this case
[numac3, denac3] = cloop(numa3, dena3);
%----PID ends

% Plotting the new step-response
t = 0:0.00001:0.3;

% New G1 for overall closed loop transfer function
G1 = tf(numac1, denac1);

G2 = tf(numac2, denac2);

G3 = tf(numac3, denac3);

% Plots the Step Response diagram
figure;
hold on
step(G1, t);
hold on
step(G2, t);
hold on
step(G3, t);
legend('P', 'PI', 'PID');
title('Closed Loop PID ZN step response generated for P, PI and
PID combinations');
xlabel('Time, [s]')
ylabel('Voltage, [volts]')
% End of code

71

Figure 9.36 – Closed loop PID response for P, PI and PID with t-max=0.01s

Figure 9.37 – Closed loop PID response for P, PI and PID with t-max=0.03

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Closed Loop PID ZN step response generated for P, PI and PID combinations

Time, [s] (sec)

Vo
lta

ge
, [

vo
lts

]

P
PI
PID

0 0.005 0.01 0.015 0.02 0.025 0.03
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Closed Loop PID ZN step response generated for P, PI and PID combinations

Time, [s] (sec)

Vo
lta

ge
, [

vo
lts

]

P
PI
PID

72

Figure 9.38 – Closed loop PID response for P, PI and PID with t-max=0.1

Figure 9.39 – Closed loop PID response for P, PI and PID with t-max=0.3

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Closed Loop PID ZN step response generated for P, PI and PID combinations

Time, [s] (sec)

Vo
lta

ge
, [

vo
lts

]

P
PI
PID

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Closed Loop PID ZN step response generated for P, PI and PID combinations

Time, [s] (sec)

Vo
lta

ge
, [

vo
lts

]

P
PI
PID

73

Figure 9.40 – Closed loop PID response for P, PI and PID (1st Zoom)

Figure 9.41 – Closed loop PID response for P, PI and PID (2nd Zoom)

-0.02 -0.01 0 0.01 0.02 0.03 0.04

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

Closed Loop PID ZN step response generated for P, PI and PID combinations

Time, [s] (sec)

Vo
lta

ge
, [

vo
lts

]
P
PI
PID

-0.005 0 0.005 0.01 0.015 0.02 0.025

0.9

0.95

1

1.05

1.1

1.15

1.2

Closed Loop PID ZN step response generated for P, PI and PID combinations

Time, [s] (sec)

Vo
lta

ge
, [

vo
lts

]

P
PI
PID

74

Figure 9.42 – Closed loop PID response for P, PI and PID (3rd Zoom)

9.4 Comparison effects of Trial and Error with Ziegler-Nichols tuning

methods

This is made by creating m-file, UpdatedPID_TErrznj.m for only the PID

parameters effects. The generated figure is as shown below in figure--:

-4 -2 0 2 4 6 8

x 10
-3

0.92

0.94

0.96

0.98

1

1.02

1.04

Closed Loop PID ZN step response generated for P, PI and PID combinations

Time, [s] (sec)

Vo
lta

ge
, [

vo
lts

]
P
PI
PID

75

UpdatedPPIPID_TErrznj.m

%
% Start of code
%
clear
close all

% includes constant parameters
constants
% includes evaluated constants
evaluatedconstants
num = 1/Ke;
den = [tm*te tm 1];

%Trial and Error PID parameters part
TErrorPID
%Ziegler-Nichols PID parameters part
ZNPIDcomp

% Plotting the new step-response
t = 0:0.00001:0.03;

% New G for overall closed loop transfer function
GZN = tf(numacZN, denacZN);

GTErr = tf(numacTErr, denacTErr);

% Plots the Step Response diagram
figure;
hold on
step(GZN, t);
hold on
step(GTErr, t);

legend('Trial and Error PID', 'Ziegler-Nichols PID');
title('Closed Loop PID for Trial and Error/Ziegler-Nichols step
response output for PID');
xlabel('Time, [s]')
ylabel('Voltage, [volts]')
% End of code

76

Figure 9.43 – Closed loop response for Trial and Error/Ziegler-Nichols tuning

methods

Figure 9.44 – Closed loop response for Trial and Error/Ziegler-Nichols tuning

methods (1st zoomed)

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Closed Loop PID for Trial and Error/Ziegler-Nichols step response output for PID

Time, [s] (sec)

Vo
lta

ge
, [

vo
lts

]

Trial and Error PID
Ziegler-Nichols PID

0 1 2 3 4 5 6

x 10
-3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Closed Loop PID for Trial and Error/Ziegler-Nichols step response output for PID

Time, [s] (sec)

Vo
lta

ge
, [

vo
lts

]

Trial and Error PID
Ziegler-Nichols PID

77

Figure 9.45 – Closed loop response for Trial and Error/Ziegler-Nichols tuning

methods (2nd zoomed, right side)

Figure 9.46 – Closed loop response for Trial and Error/Ziegler-Nichols tuning

methods (3rd zoomed, left side, with t-max=0.03)

0 1 2 3 4 5 6 7 8

x 10
-3

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

Closed Loop PID for Trial and Error/Ziegler-Nichols step response output for PID

Time, [s] (sec)

Vo
lta

ge
, [

vo
lts

]
Trial and Error PID
Ziegler-Nichols PID

0.011 0.012 0.013 0.014 0.015 0.016 0.017

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

Closed Loop PID for Trial and Error/Ziegler-Nichols step response output for PID

Time, [s] (sec)

Vo
lta

ge
, [

vo
lts

]

Trial and Error PID
Ziegler-Nichols PID

78

10 FOOTBALL PITCH LAYOUT MODEL

10.1 Dimensions of the Pitch

The football pitch model serves as the background for the main plot of the

trajectory path of the robot wheel. The basic dimensions (in millimetres) used are

given below and are scaled down to metres in the model plot.

 Part Label Dimension (mm)

1. Length 6050

2. Width 4050

3. Centre circle (radius) 500

Table 10.1 – Dimensions of the Football pitch layout model

The figure 10.1 below shows the main target design based on the Laws of the

F180 League 2009 [12]. The needed design for the thesis is the main pitch shown

in white lines.

Figure 10.1 – Dimension of the standard pitch required [12]

79

10.2 Football pitch MATLAB design implementation

The figure 10.2 shows the full part label of the football pitch layout. But the main

target design is shown in figure 10.1. This follows with the m-files used to

generate the whole pitch layout robotpatternUpdated.m,

newFieldSpec.m, robotBlockpart.m,

semiCircleBottomLeft.m, semiCircleBottomRight.m,

semiCircleTopLeft.m, semiCircleTopRight.m and testcir2.m

(for centre circle plot) used to generate the actual design and shown in figure 10.2.

The output football pitch generated is given under figure 10.3 below.

Figure 10.2 – Part label of the Football pitch layout model

-30 -20 -10 0 10 20 30
-20

-15

-10

-5

0

5

10

15

20

Inner Box '18'

Length of the
Pitch

Width of the
Pitch

Centre Circle

Outer Box '18'

80

testcir2.m

semiCircleBottomLeft.m

%draw circle code
%resolution of plot
t2 = linspace(2*pi, 3*pi/2,100000);
%assumed centre of the circle (cirX, cirY): sets at origin (0, 0)
cirX2=0;
cirY2=18.50;

%radius of the centre circle, 500mm=5m
r=5;

%circle dual equations
x2 = r*cos(t2)+cirX2;
y2 = r*sin(t2)+cirY2;

plot(x2, y2, 'Color', 'black')

%end of code

%draw circle code
%resolution of plot
t = linspace(0,2*pi,100000);

%assumed centre of the circle (cirX, cirY): sets at origin (0, 0)
cirX=30.25;
cirY=20.25;

%radius of the centre circle, 500mm=5m
r=5;

%circle dual equations
x = r*cos(t)+cirX;
y = r*sin(t)+cirY;

plot(x,y, 'Color','black');
%end of code

81

semiCircleBottomRight.m

semiCircleTopLeft.m

%draw circle code
%resolution of plot
t1 = linspace(0, pi/2,100000);
%assumed centre of the circle (cirX, cirY): sets at origin (0, 0)
cirX1=0;
cirY1=22.00;

%radius of the centre circle, 500mm=5m
r=5;

%circle dual equations
x1 = r*cos(t1)+cirX1;
y1 = r*sin(t1)+cirY1;

plot(x1, y1, 'Color', 'black')

%end of code

%draw circle code
%resolution of plot
t3 = linspace(pi, 3*pi/2,100000);
%assumed centre of the circle (cirX, cirY): sets at origin (0, 0)
cirX3=60.50;
cirY3=18.50;

%radius of the centre circle, 500mm=5m
r=5;

%circle dual equations
x3 = r*cos(t3)+cirX3;
y3 = r*sin(t3)+cirY3;

plot(x3, y3, 'Color', 'black')

%end of code

82

semiCircleTopRight.m

robotpatternUpdated.m

%refreshes figures for new ones
clear
close all

%activities needed on the robot field layout

%test plot sample
%---
%---
len=100;
robot=zeros(1,len);

%start position
X(1)=-40;
Y(1)=-40;

%move to cordinates
x_goal=0;
y_goal=0;

%
%just something to plot
%this will be for the actual robot movement path
%
for n=1:len
 robot(n)=sin(n)+10;
end
%

%plot robot movement
hold on
plot(robot, 'Color', 'red')

%plot the robot pitch layout
newFieldSpec

%draw circle code
%resolution of plot
t4 = linspace(pi/2, pi, 100000);
%assumed centre of the circle (cirX, cirY): sets at origin (0, 0)
cirX4=60.50;
cirY4=22.00;
%radius of the centre circle, 500mm=5m
r=5;
%circle dual equations
x4 = r*cos(t4)+cirX4;
y4 = r*sin(t4)+cirY4;
plot(x4, y4, 'Color', 'black')
%end of code

83

Figure 10.3 – Generated football pitch model using

robotpatternUpdated.m

0 10 20 30 40 50 60
0

5

10

15

20

25

30

35

40

84

11 ROBOT 4-WHEEL MOTOR MODEL TRAJECTORY

PLANNING

This part involves the cascaded arrangement of all the four wheels with

connection to the corresponding system blocks affecting the overall performance

of the robot path movement. The block arrangement used is as shown in figure

11.1 below:

After the necessary planning was done, the path simulation would be done on the

football model developed with the MATLAB.

85

R
O

B
O

T LO
G

IC
C

O
N

TR
O

LLER

TR
A

N
SFO

R
M

A
TIO

N

B
LO

C
K

W
H

EEL PID
s

M
O

TO
R

 M
O

D
ELS

R
O

B
O

T PO
SITIO

N

V
x w

1
V

y = w
2

V
p w

3
 w

4

w
1

 w
2 = X

, Y
w

3
w

4

X
, Y

Figure 11.1 – Full robot implementation block

86

The robot wheels have the following wheel arrangement as shown in figure below

figure 11.3 below: the wheels motors are in an asymmetrical arrangement; this is a

prototype drawing from the figure 11.2. With radian evaluation, the angles p1, p2,

p3 and p4 are related to the angle of the wheel axis – 53O, 53O, 45O, and 45O. The

whole evaluations as regards this were done in the codes –

robotBlockpart.m, robotControllLogic.m, veloToWheel.m,

wheelPIDs.m, and speedToXY.m based on figure 11.1 implementation

plan.

Figure 11.2 – An extract from “Omnidirectional control” [13]

p1

p4

p2 p3

x1,y1 x4,y4

x2,y2 x3,y3

45O

53O53O

45O

Figure 11.3 – Asymmetrical robot wheel arrangement based on the

Omnidirectional robot control

87

robotTrajectoryPlan.m

%plots robot trajectory path
clear
close all
len=100;
robot=zeros(1,len);

X=zeros(1,100);Y=zeros(1,100);

%start position
X(1)=25;Y(1)=25;
a1(1)=0;a2(1)=0;a3(1)=0;a4(1)=0;
a1(2)=0;a2(2)=0;a3(2)=0;a4(2)=0;
a1(3)=0;a2(3)=0;a3(3)=0;a4(3)=0;

%move to cordinates
x_goal=0;y_goal=0;

n=1;k=3;
robotGain=0.00001;

%inlcudes motor constants
constants
% includes evaluated constants
evaluatedconstants

num = 1/Ke;
den = [tm*te tm 1];

%Ziegler-Nichols parameter computed
Kp = 11.327; %Proportional gain
Ki = 1381.34; %Integral gain
Kd = 0.0232; %Derivative gain
% For the PID equation
numc = [Kd Kp Ki];
denc = [1 0];

% convule "num with numc" and "den with demc"
numa = conv(num, numc);
dena = conv(den, denc);

sys = tf(numa,dena,1/1000);

integrationSums=[0, 0, 0, 0];

% robot block parts
robotBlockpart

%plot robot movement
hold on
plot(X,Y);

%plot the robot pitch layout
newFieldSpec

88

robotBlockpart.m

This will take the main part of the planning and trajectory simulation

while n==1
 %done?
 %robot control logic - BLOCK 1
 [Vx(k),Vy(k),Vp(k)]=robotControlLogic(X(k-1),Y(k-
1),x_goal,y_goal,robotGain);

 %Done
 %transformation block - BLOCK 2
 %transformation matrix from velocity vector to wheelspeeds
 [w1(k),w2(k),w3(k),w4(k)] = veloToWheel(Vx(k),Vy(k),Vp(k),X(k-
1),Y(k-1));

 %Done
 %Wheel PIDs - BLOCK 3
 %the idividual PID controllers for the wheels including
wheelmotor model
 temp=integrationSums;
 oldArray=[a1(k-1),a2(k-1),a3(k-1),a4(k-1)];
 oldoldArray=[a1(k-2),a2(k-2),a3(k-2),a4(k-2)];

[a1(k),a2(k),a3(k),a4(k),integrationSums]=wheelPIDs(w1(k),w2(k),w3
(k),w4(k),temp,oldArray,oldoldArray);

 %motor model

 %Done
 %robot position - BLOCK 4
 %converts actual wheel motor speed to robot X Y position
 [X(k),Y(k)]=speedToXY(a1(k),a2(k),a3(k),a4(k),X(k-1),Y(k-1));

 %check if close enough to the goal coordinates
 if abs(X(k)-x_goal)<0.1%% && abs(Y(k)-y_goal)<0.1
 n=0;
 end
 if abs(Y(k)-y_goal)<0.1%% && abs(Y(k)-y_goal)<0.1
 n=0;
 end

 if abs(X(k))>41
 n=0;
 end
 if abs(Y(k))>41
 n=0;
 end
 if k>99
 n=0;
 end
 %increment loop index
 k=k+1;
end

89

robotControlLogic.m

wheelPIDs.m

function
[a1,a2,a3,a4,intSums]=wheelPIDs(w1,w2,w3,w4,intSumsIn,y_old,y_oldo
ld)
 %actual PIDs here
 %Ziegler-Nichols parameter computed
 Kp = 11.327; %Proportional gain
 Ki = 1381.34; %Integral gain
 Kd = 0.0232; %Derivative gain

 inputs=[w1, w2, w3, w4];

 %certainty problem
 for n=1:4
 PIDin=inputs(n);
 sumIn=intSumsIn(n);

 [y,sumOut]=myPID(PIDin,y_old(n),y_oldold(n),sumIn);

 intSums(n)=sumOut;
 outputs(n)=y;
 end

 a1=outputs(1);
 a2=outputs(2);
 a3=outputs(3);
 a4=outputs(4);
end

function [Vx,Vy,Vp]=robotControlLogic(X,Y,x_goal,y_goal,k)

 Mag_x=x_goal-X;
 Mag_y=y_goal-Y;

 M=sqrt(Mag_x^2+Mag_y^2);

 Vx=k*Mag_x/M;
 Vy=k*Mag_y/M;
 Vp=0;

end

90

speedToXY.m

function [X,Y]=speedToXY(a1,a2,a3,a4,Xold,Yold)
%Calculate X Y position based on actual wheelspeeds since last
sample
% |W1| |Vx|
% |W2| -> |Vy|
% |W3| |Vp|
% |W4|

%Angle of each wheel in Rad, these angles does not change in this
simulation
p1=2.49582083; %143 deg
p2=3.92699082; %225 deg
p3=5.49778714; %315 deg
p4=0.645771823; %37 deg

%Co-ordinates of each wheel in Meter
[x1,x2,x3,x4,y1,y2,y3,y4]=wheelsXYfromXY(Xold,Yold,p1,p2,p3,p4);

 if 1

 %actual wheel speeds...
 W=[a1, a2, a3, a4];
 %transformation matrix
 A=[cos(p1),sin(p1),(-y1*cos(p1)+x1*sin(p1)),1;
 cos(p2),sin(p2),(-y2*cos(p2)+x2*sin(p2)),1;
 cos(p3),sin(p3),(-y3*cos(p3)+x3*sin(p3)),1;
 cos(p4),sin(p4),(-y4*cos(p4)+x4*sin(p4)),1];
 inversA=inv(A);
 else

 %actual wheel speeds…
 W=[a1, a2, a3];
 A=[cos(p1),sin(p1),(-y1*cos(p1)+x1*sin(p1));
 cos(p2),sin(p2),(-y2*cos(p2)+x2*sin(p2));
 cos(p3),sin(p3),(-y3*cos(p3)+x3*sin(p3));
 cos(p4),sin(p4),(-y4*cos(p4)+x4*sin(p4))];
 inversA=inv(A);
 end
 %use the inverse of A here since matrix division is not allowed

 B=W*inversA;

%??
X=Xold+B(1);
Y=Yold+B(2);
%rotation=B3(3); this is not needed if rotation is omitted
end

91

veloToWheel.m

function [w1,w2,w3,w4] = veloToWheel(Vx,Vy,Vp,X,Y)
%Calculate the individual wheelspeed based on the three component
%vector velocity of the robot
%|Vx| |W1|
%|Vy| -> |W2|
%|Vp| |W3|
% |W4|
%Desired speed vectors

%Angle of each wheel in Rad
p1=2.49582083; %143 deg
p2=3.92699082; %225 deg
p3=5.49778714; %315 deg
p4=0.645771823; %37 deg

%Co-ordinates of each wheel in Meter
[x1,x2,x3,x4,y1,y2,y3,y4]=wheelsXYfromXY(X,Y,p1,p2,p3,p4);

if 0
 %Wheel 1
 x1=0.0677;y1=0.0511;

 %Wheel 2
 x2=-0.0599;y2=0.0596;

 %Wheel 3
 x3=-0.0599;y3=-0.0596;

 %Wheel 4
 x4=0.0677;y4=-0.0511;
end

%Transformation Matrix
A=[cos(p1),sin(p1),(-y1*cos(p1)+x1*sin(p1));
 cos(p2),sin(p2),(-y2*cos(p2)+x2*sin(p2));
 cos(p3),sin(p3),(-y3*cos(p3)+x3*sin(p3));
 cos(p4),sin(p4),(-y4*cos(p4)+x4*sin(p4));];

%3 component vector matrix
B=[Vx;Vy;Vp];
W=(A*B); %Matrix solution giving result for velocity of each wheel
w1=W(1);
w2=W(2);
w3=W(3);
w4=W(4);
end

92

Figure 11.4 – The output of the robot path plotting

The blue line in figure 11.4 shows the planned path of the robot trajectory.

0 10 20 30 40 50 60
0

5

10

15

20

25

30

35

40

93

12 CONCLUSION, CHALLENGES AND

RECOMMENDATION

12.1 Conclusion

In this work, the PID controller was used as a vital technical tool used in system

modelling and control. It started with the analysis and reasons why an absolute

précised control is important in drives particularly the BLDC motors and then the

mathematical modelling. Also, the use of the MATLAB®/SIMULINK® to develop

the robot football pitch model and the trajectory planning were additional parts to

this work.

12.2 Challenges

Some of challenges faced include: the intensive study of

MATLAB®/SIMULINK® and the various modelling techniques. More also, the

knowledge of mathematical methods was needed to enhanced my modelling

ability in this thesis as it required more mathematical skills. In additional, some of

areas of control systems engineering had to be studied to have a blend of

understanding in the areas of system stability. And one major challenging part

was the aspect of model the path of the robot from one point to another. This part

required some advanced mathematical skills which could not be implemented. A

straight path was gotten in the trajectory simulation.

12.3 Recommendations – Possible improvement

This work could be improved by incorporating the hardware testing and possible

laboratory testing. Also, to have a more précised PID parameters, new methods of

PID tuning (the use of genetic algorithms) could be employed for optimal values.

In addition to the use of PID controller, another instance of Single-Input-Single-

Output (SISO) could be used under the MATLAB versatile toolbox.

More also, the real testing and program implementation of the BLDC motor could

be harnessed by using the MATLAB®/SIMULINK® utilities and being able to

94

incorporate C-programming with the microcontroller. And more technical

resources should be available to the student for proper execution of the work.

95

REFERENCES

[1] Siemens Training Education Program, STEP 2000 Series, “Basics of DC

drives and related products”.

[2] Crouzet motor manuals, “Some principles of DC motors”.

[3] Microchip Technology Incorporated 2003, Padmaraja Yedamale, “Brushless

DC motor fundamentals”.

[4] P. C. Sen. Principles of Electric Machines and Power Electronics. John Wiley

& Sons, 1997.

[5] Carnegie-Mellon University and University of Michigan Online resources –

Control Tutorials for MATLAB: PID Tutorial. Accessed 25th February 2009.

[6] Texas Instruments Incorporated. DSP Solutions for BLDC Motors, 1997.

[7] Åstrom, K and Hägglund, T (1994), PID controllers: theory, design and

tuning. 2nd edition.

[8] Maxon EC motor, May 2008 edition, EC 45 flat ∅45 mm, brushless, 30 Watt

Maxon flat motor.

[9] MATLAB/SIMULINK Documentations (Help file)

[10] Brian R Copeland , The Design of PID Controllers using Ziegler Nichols

Tuning, 2008

[11] George W. Younkin, Electric Servo-motor equations and time constants.

[12] The Laws of the F180 League 2009 – Small sized robocup league

[13] Raul Rojas, Omnidirectional control, Updated 18 May, 2005.

96

APPENDIX

contants.m, 25

evaluatedconstants.m, 25

topenloop.m, 26

UpdatedPPIPID_TrialError4.m, 39

UpdatedPPIPID_TrialError.m, 49

topenloop_zn, 56

topenloopP_zn, 60

topenloopPI_zn, 63

topenloopPID_zn, 65

UpdatedPPIPID_znj.m, 69

UpdatedPPIPID_TErrznj.m, 75

testcir2.m, 80

semiCircleBottomLeft.m, 80

semiCircleBottomRight.m, 81

semiCircleTopLeft.m, 81

semiCircleTopRight.m, 82

robotpatternUpdated.m, 82

robotTrajectoryplan.m, 87

robotBlockpart.m, 88

robotControlLogic.m, 89

wheelPIDs.m, 89

speedToXY.m, 90

veloToWheel.m, 91

	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	ABBREVIATIONS AND SOME TERMS
	1 INTRODUCTION
	2 DC MOTOR
	2.1 DC motors

	3 DC MOTOR MODEL
	3.1 Mathematical model of a typical DC motor

	4 BRUSHLESS DC MOTOR AND MODEL CONCEPT
	4.1 Mathematical model of a typical BLDC motor

	5 MAXON BLDC MOTOR
	5.1 Maxon EC 45 flat ∅45 mm, brushless DC motor

	6 BLDC Maxon Motor Mathematical Model
	7 OPEN LOOP ANALYSIS OF THE MAXON MOTOR MODEL
	7.1 Open Loop Analysis using MATLAB m-file
	7.2 Open Loop Analysis using SIMULINK

	8 PID DESIGN CONCEPT
	8.1 Some characteristics effects of PID controller parameters
	8.2 PID controller design tips

	9 PID CONTROLLER TUNING PARAMETERS
	9.1 The PID arrangement
	9.2 Trial and Error tuning methods
	9.2.1 The Routh-Hurwitz stability rule
	9.2.2 Proportional control
	9.2.3 Proportional-Integral control
	9.2.4 Proportional-Integral-Derivative control

	9.3 Ziegler-Nichols tuning methods
	9.4 Comparison effects of Trial and Error with Ziegler-Nichols tuning methods

	10 FOOTBALL PITCH LAYOUT MODEL
	10.1 Dimensions of the Pitch
	10.2 Football pitch MATLAB design implementation

	11 ROBOT 4-WHEEL MOTOR MODEL TRAJECTORY PLANNING
	12 CONCLUSION, CHALLENGES AND RECOMMENDATION
	12.1 Conclusion
	12.2 Challenges
	12.3 Recommendations – Possible improvement

	REFERENCES
	APPENDIX

96

[image: tunnus_CMYK.tif]

		Oludayo John Oguntoyinbo

		PID CONTROL OF BRUSHLESS DC MOTOR AND ROBOT TRAJECTORY PLANNING AND SIMULATION WITH MATLAB®/SIMULINK®

		

		Technology and Communication

		2009

[bookmark: _Toc248224133]ACKNOWLEDGEMENTS

My sincere gratitude goes first to my Creator. Though it has been such a journey academically, He has been my Sufficiency and my Help in times of need. “He knows me well”

Mr and Mrs Oguntoyinbo, my parents, deserve all the credit for their support both in kind and in cash; they have been there all through my life voyage prayerfully for me. Their patience is greatly appreciated.

To my supervisor, his view that everything is simple still amazes me even when the “stuffs” are serious nuts to crack. I am grateful for his service.

To my technical friends, Ifeta Adekunle and Frej, your technical supports are worthy of appreciation. You made a part of my story.

To my friends and personal friend, you are worthy of my kudos.

Thank you!

Oludayo Oguntoyinbo

December, 2009

VAASAN AMMATTIKORKEAKOULU

UNIVERSITY OF APPLIED SCIENCES

Degree Programme of Information Technology

ABSTRACT

Author 		Oludayo John Oguntoyinbo

Title	PID Control of Brushless DC Motor and Robot Trajectory Planning Simulation with MATLAB®/SIMULINK®

Year	2009

Language		English

Pages 		90 + 0 Appendices

Name of Supervisor	Liu Yang

This report presents a PID model of a brushless dc (BLDC) motor and a robot trajectory planning and simulation. A short description of the brushless dc motor is given. For this work, mathematical models were developed and subsequently used in getting the simulation parameters. The PID model is accomplished with the use of MATLAB®/SIMULINK®. The operational parameters of the specific BLDC motor were modelled using the tuning methods which are used to develop subsequent simulations. The best PID parameters were thereafter used for the robot trajectory and simulation over a football pitch model.

Keywords		PID, BLDC motor, MATLAB/SIMULINK

CONTENTS

ACKNOWLEDGEMENTS	1

LIST OF FIGURES	5

LIST OF TABLES	7

ABBREVIATIONS AND SOME TERMS	8

1	INTRODUCTION	9

2	DC MOTOR	12

2.1	DC motors	12

3	DC MOTOR MODEL	14

3.1	Mathematical model of a typical DC motor	14

4	BRUSHLESS DC MOTOR AND MODEL CONCEPT	19

4.1	Mathematical model of a typical BLDC motor	19

5	MAXON BLDC MOTOR	22

5.1	Maxon EC 45 flat 45 mm, brushless DC motor	22

6	BLDC Maxon Motor Mathematical Model	23

7	OPEN LOOP ANALYSIS OF THE MAXON MOTOR MODEL	25

7.1	Open Loop Analysis using MATLAB m-file	25

7.2	Open Loop Analysis using SIMULINK	29

8	PID DESIGN CONCEPT	32

8.1	Some characteristics effects of PID controller parameters	34

8.2	PID controller design tips	35

9	PID CONTROLLER TUNING PARAMETERS	36

9.1	The PID arrangement	36

9.2	Trial and Error tuning methods	37

9.2.1	The Routh-Hurwitz stability rule	37

9.2.2	Proportional control	41

9.2.3	Proportional-Integral control	44

9.2.4	Proportional-Integral-Derivative control	47

9.3	Ziegler-Nichols tuning methods	54

9.4	Comparison effects of Trial and Error with Ziegler-Nichols tuning methods	74

10	FOOTBALL PITCH LAYOUT MODEL	78

10.1	Dimensions of the Pitch	78

10.2	Football pitch MATLAB design implementation	79

11	ROBOT 4-WHEEL MOTOR MODEL TRAJECTORY PLANNING	84

12	CONCLUSION, CHALLENGES AND RECOMMENDATION	93

12.1	Conclusion	93

12.2	Challenges	93

12.3	Recommendations – Possible improvement	93

REFERENCES	95

APPENDIX	96

[bookmark: _Toc248224134]LIST OF FIGURES

Figure 2.1 – Sectional illustration of a DC motor [2]	12

Figure 2.2 – A dc motor operation with a thyristor arrangement using the thyristor firing angle to vary the dc voltage [4].	13

Figure 3.1 – A typical DC motor equivalent electrical circuit.	14

Figure 3.2 – A typical DC motor electromechanical system arrangement.	14

Figure 4.1 – Brushless DC motor schematic diagram	20

Figure 7.1 – Open Loop Step Response	27

Figure 7.2 – Open Loop Step Root Locus with Gain = 0, Overshoot % = 0 and Damping = 1 for both poles	27

Figure 7.3 – Open Loop Step Nyquist Diagram	28

Figure 7.4 – Open Loop Step Bode Plot Diagram	28

Figure 7.5 – Open loop step response simulink arrangement	29

Figure 7.6 – Step input for the open loop simulink arrangement (at t=1)	30

Figure 7.7 – Open loop step response output for the simulink arrangement	30

Figure 7.8 – Combined step input and open loop step response span over t=0.5 s	31

Figure 8.1 – A typical system with a controller [8]	32

Figure 8.2 – PID parameters schematics	33

Figure 9.1 – PID Schematic for a full PID Controller with System model arrangement	36

Figure 9.2 – PID Schematic for a full PID Controller (with saturation) and system model arrangement	37

Figure 9.3 – Trial and Error PID computation diagram	38

Figure 9.4 – Proportional controller gain effect on the system	41

Figure 9.5 – Root locus diagram for the proportional controller gain effect	42

Figure 9.6 – Nyquist diagram for the proportional controller gain effect	42

Figure 9.7 – Bode plot for the proportional controller gain effect	43

Figure 9.8 – Trial and error value used for the P parameters output, with KI and KD set to zero	43

Figure 9.9 – Trial and error value used for the P parameters output, with KI and KD set to zero (zoomed display)	44

Figure 9.10 – Trial and error values used for the PI parameters output	45

Figure 9.11 – Trial and error values used for the PI parameters output with Kd=0 (zoomed)	45

Figure 9.12 – Trial and error values used for the PI parameters output with Ki multiplied 1000 and Kd=0	46

Figure 9.13 – Trial and error values used for the PI parameters output with Ki multiplied 1000 and Kd=0 (zoomed)	46

Figure 9.14 – Trial and error method for PID – control effect on the system response (first trial with Kd set at 0.0763)	47

Figure 9.15 – Trial and error method for PID – control effect on the system response (first trial with Kd set at 0.0763, zoomed)	48

Figure 9.16 – Trial and error method for P, PI and PID – control effect on the system response (t-max=0.3s)	51

Figure 9.17 – Trial and error method for P, PI and PID – control effect on the system response (t-max=0.1s)	51

Figure 9.18 – Trial and error method for P, PI and PID – control effect on the system response (t-max=0.03s)	52

Figure 9.19 – Trial and error method for P, PI and PID – control effect on the system response (t-max=0.01s)	52

Figure 9.20 – Trial and error method for P, PI and PID – control effect on the system response (1st zooming)	53

Figure 9.21 – Trial and error method for P, PI and PID – control effect on the system response (2nd zooming)	53

Figure 9.22 – Trial and error method for P, PI and PID – control effect on the system response (3rd zooming)	54

Figure 9.23 – Ziegler-Nichols step response tuning method [10]	55

Figure 9.24 – Ziegler-Nichols open step response plot computation	57

Figure 9.25 – Ziegler-Nichols open step response horizontally zoomed	57

Figure 9.26 – Ziegler-Nichols open step response vertically zoomed	58

Figure 9.27 – P output for the Ziegler-Nichols tuning method	61

Figure 9.28 – P output for the Ziegler-Nichols tuning method root locus output	61

Figure 9.29 – P output for the Ziegler-Nichols tuning method Bode plot output	62

Figure 9.30 – PI output for the Ziegler-Nichols tuning method	64

Figure 9.31 – Auto-scaled PID output for the Ziegler-Nichols tuning method	66

Figure 9.32 – Auto-scaled PID output for the Ziegler-Nichols tuning method (zoomed overshoot point)	66

Figure 9.33 – PID Ziegler-Nichols tuning method Root locus diagram	67

Figure 9.34 – PID Ziegler-Nichols tuning method Nyquist diagram	67

Figure 9.35 – PID Ziegler-Nichols tuning method Bode plot diagram	68

Figure 9.36 – Closed loop PID response for P, PI and PID with t-max=0.01s	71

Figure 9.37 – Closed loop PID response for P, PI and PID with t-max=0.03	71

Figure 9.38 – Closed loop PID response for P, PI and PID with t-max=0.1	72

Figure 9.39 – Closed loop PID response for P, PI and PID with t-max=0.3	72

Figure 9.40 – Closed loop PID response for P, PI and PID (1st Zoom)	73

Figure 9.41 – Closed loop PID response for P, PI and PID (2nd Zoom)	73

Figure 9.42 – Closed loop PID response for P, PI and PID (3rd Zoom)	74

Figure 9.43 – Closed loop response for Trial and Error/Ziegler-Nichols tuning methods	76

Figure 9.44 – Closed loop response for Trial and Error/Ziegler-Nichols tuning methods (1st zoomed)	76

Figure 9.45 – Closed loop response for Trial and Error/Ziegler-Nichols tuning methods (2nd zoomed, right side)	77

Figure 9.46 – Closed loop response for Trial and Error/Ziegler-Nichols tuning methods (3rd zoomed, left side, with t-max=0.03)	77

Figure 10.1 – Dimension of the standard pitch required [12]	78

Figure 10.2 – Part label of the Football pitch layout model	79

Figure 10.3 – Generated football pitch model using robotpatternUpdated.m	83

Figure 11.1 – Full robot implementation block	85

Figure 11.2 – An extract from “Omnidirectional control” [13]	86

Figure 11.3 – Asymmetrical robot wheel arrangement based on the Omnidirectional robot control	86

Figure 11.4 – The output of the robot path plotting	92

[bookmark: _Toc248224135]LIST OF TABLES

Table 5.1 – BLDC motor parameters used [8]	22

Table 8.1 – PID controller parameter characteristics on a typical system [8]	34

Table 9.2 – Results of the Trial and Error method for PID controller parameters	48

Table 9.1 – Ziegler-Nichols PID controller parameters model [10]	55

Table 9.2 – Results of the Ziegler-Nichols method for PID controller parameters	59

Table 10.1 – Dimensions of the Football pitch layout model	78

[bookmark: _Toc248224136]ABBREVIATIONS AND SOME TERMS

BLDC		Brushless Direct Current

PID		Proportional, Integral and Derivative

MATLAB		MATrix LABoratory

M-file		MATLAB text editor file

mdl		Simulink model extension

Nyquist Diagram

Bode Plot

Root Locus

State-space equation

System response

Routh-Hurwitz

Ziegler-Nichols

[bookmark: _Toc231276896][bookmark: _Toc231356526][bookmark: _Toc248224137]INTRODUCTION

The use of the general type dc motors has its long history. It has been used in the industries for many years now. They provide simple means and precise way of control [1]. In addition, they have high efficiency and have a high starting torque versus falling speed characteristics which helps high starting torque and helps to prevent sudden load rise [2]. But with such characteristics, the dc motors have some deficiencies that needed to be attended to which gave rise to design of some other alternative types of dc motors. For example, the lack of periodic maintenance, mechanical wear outs, acoustic noise, sparkling, brushes effects are some of the problems that were needed to overcome the defects in dc motors. As a result, emphatic studies have been made on synchronous dc motors with brushless commutators. So, current researches have been tailored towards developing brushless direct current motors, which are fast becoming alternatives to the conventional dc motor types. The BrushLess Direct Current (BLDC) motors are gaining grounds in the industries, especially in the areas of appliances production, aeronautics, medicine, consumer and industrial automations and so on.

The BLDC are typically permanent synchronous motors, they are well driven by dc voltage. They have a commutation that is done mainly by electronics application.

Some of the many advantages of a brushless dc motor over the conventional “brushed dc motors are highlighted below [3]:

1. Better speed versus torque characteristics

2. High dynamic response

3. High efficiency

4. Long operating life

5. Noiseless operation

6. Higher speed ranges

7. Low maintenance (in terms of brushes cleaning; which is peculiar to the brushed dc motors).

Another vital advantage is that the ratio of torque delivered to the size of the motor is higher, and this contributes to its usefulness in terms of space and weight consideration.

The BLDC motors come in different phases, for example, single phase, double-, and triple- types. In depth discussion would not be made in this regards, but the most commonly used of all these is the three phase type.

For this purpose, a brief perspective will be considered on how the BLDC motors could be compensated in terms of control and stability. Therefore, this report would presents a theoretical background of DC and BLDC motors, design of simple model of basic DC motors tailored towards developing a BLDC motor model. In addition, a brief introduction of a very essential tool of stability determinant would also be discussed under “PID auto-tuning”. Thereafter, a MATLAB®/SIMULINK® model of the BLDC motor would also be reported accordingly.

The PID controller is applied in various fields of engineering, and it is also a very important tool in telecommunication system. If there is a system and stability is desired, then PID could be very useful.

A simple systematic approach to these tasks is given in chapter format as given below. The chapters 2 and 3 present the “DC motor and design concepts” while chapter 4 gives a brief introduction into the Brushless DC motor and its model concept. It also elaborates the basic concept of their mathematical representations in simple format. The particular BLDC motor used is a maxon motor and chapters 5 – 7 present the whole modelling idea of this specific motor and the open loop response analysis was also included as part of the pre-analysis needed for the subsequent control.

Also, the idea of the PID (Proportional-Integral-Derivative) controller and its design concepts, control mechanism and tuning methods are presented under chapters 8 and 9.

Chapters 10 – 12 present the work done on the robot trajectory planning and simulation. The chapter 10 was used to elaborate the required standard football pitch layout model; chapter 11, for the analysis and computation for the robot four-wheeled motors and the chapter 12 gives the planning stages and corresponding coding schemes.

The results analysis and discussion is presented under the 13th chapter; and finally the chapter fourteen focuses on the conclusion, challenges and recommendation and possible improvement needed in future works.

[bookmark: OLE_LINK1][bookmark: OLE_LINK2][bookmark: _Toc248224138]DC MOTOR

[bookmark: _Toc248224139]DC motors

A brief illustration and mathematical representation of DC motors will be discussed in the section based on the general concepts of electromagnetic induction.

The DC motors are made of a number of components; some of which are [1]:

1. Frame

2. Shaft

3. Bearings

4. Main field windings (Stator)

5. Armature (Rotor)

6. Commutator

7. Brush Assembly[footnoteRef:1] [1: This is a major difference between the DC and the BLDC motors]

The most important part of these components that needs detail attention is the main field and the rotating windings (the stator and the rotor respectively).

[bookmark: _Ref247392853][bookmark: _Toc248224065]Figure 2.1 – Sectional illustration of a DC motor [2]

As shown in figure 2.1, the stator is formed by the metal carcass with a permanent magnet enclosure which a magnetic field inside the stator windings. At one of the ends is the brush mountings and the brush gear which are used for electrical contacts with the armature (the rotor).

The field windings are mounted on the poles pieces to create electromagnetism. The strength of this electromagnetic field is determined by the extent of interaction between the rotor and the stator. Also, the brushes serve as the contact-piece for the commutator to provide electrical voltage to the motor. Consistent dirt on the commutator causes disruption in the supply of dc voltage, which creates a number of maintenance applications. This sometimes could lead to corrosion and sometimes sparks between the carbon made brushes and the commutator.

One of the major challenges is the control of the speed (speed precision); but this could be done by varying the applied voltage. Varying the supply voltage might involve the use of a variable resistor (or a rheostat) which will be connected in tandem with the armature to form a series connection. But this kind of arrangement is not efficient enough as a result of power dissipation. In recent times, solid state electronics has made its implication in this regard through the use of controlled rectifiers and choppers. This arrangement could be efficient as they are used for highly efficient varying dc voltage. In most cases, the most commonly used device is the thyristor (this allows for voltage variation by varying the firing angle of the thyristor in question) [4]. Consider the simple arrangement in figure 2.2.

[bookmark: _Ref247392913][bookmark: _Toc248224066]Figure 2.2 – A dc motor operation with a thyristor arrangement using the thyristor firing angle to vary the dc voltage [4].

[bookmark: _Toc248224140]DC MOTOR MODEL

[bookmark: _Toc248224141]Mathematical model of a typical DC motor

A typical dc motor equivalent circuit is illustrated as shown in the circuit shown below in figure 3.1 and figure 3.2:

[bookmark: _Ref247392938][bookmark: _Toc248224067]Figure 3.1 – A typical DC motor equivalent electrical circuit.

[bookmark: _Ref247392961][bookmark: _Toc248224068]Figure 3.2 – A typical DC motor electromechanical system arrangement.

The basic component represented are the armature resistance, R and the armature inductance L; in addition, there is the back emf, e. From the in figure 3.1 and figure 3.2 above, the following equations are used to describe the relationship of operation.

Using the Kirchhoff’s Voltage Law, KVL, the following equation 3.1 is obtained:

		

		

		(3.1)

At steady state (DC state of zero-frequency), .

Therefore, for the non steady-state, equation 3.1 is rearranged to make provision for the back emf, as shown in equation 3.2 below:

		

		

		(3.2)

Where,

Source voltage

Similarly, considering the mechanical properties of the dc motor, from the Newton’s second law of motion, the mechanical properties relative to the torque of the system arrangement in figure 3.1 and figure 3.2 would be the product of the inertia load, J and the rate of angular velocity, is equal to the sum of all the torques; these follow with equation 3.3 and 3.4 accordingly.

		

		

		(3.3)

		

		

		(3.4)

Where,

,

Where the electrical torque and the back emf could be written as:

		

		 and

		(3.5)

Where,

Therefore, re-writing equations 3.2 and 3.3, the equation 3.6 and 3.7 are obtained,

		

		

		(3.6)

		

		

		(3.7)

Using Laplace transform to evaluate the two equations 3.6 and 3.7, the following are obtained appropriately (all initial conditions are assumed to be zero):

For equation 3.6,

		

		

		(3.8)

This implies,

		

		

		(3.9)

For equation 3.7,

		

		

		(3.10)

This implies,

		

		

		(3.11)

At no load (for equation 3.11 becomes:

		

		

		(3.12)

From equation 3.12, i is made the subject for a substitute into equation 3.9.

		

		

		(3.13)

		

		

		(3.14)

Equation 3.14 becomes:

		

		

		(3.15)

And equation 3.15 finally resolved to 3.16:

		

		

		(3.16)

The transfer function is therefore obtained as follows using the ratio of and the angular velocity, to source voltage, Vs.

That is,

		

		

		(3.17)

From these, the transfer function could be derived accordingly as follows:

That is,

		

		

		(3.18)

Considering the following assumptions:

1. The friction constant is small, that is, , this implies that;

2. , and

3.

And the negligible values zeroed, the transfer function is finally written as;

		

		

		(3.19)

So by re-arrangement and mathematical manipulation on “JL”, by multiplying top and bottom of equation 3.19 by:

Equation 3.20 is obtained after the manipulation,

		

		

		(3.20)

From equation 3.13, the following constants are gotten,

The mechanical (time constant),

		

		

		(3.21)

The electrical (time constant),

		

		

		(3.22)

Substituting the equations 3.21 and 3.22 into equation 3.20, it yields;

		

		

		(3.23)

[bookmark: _Toc248224142]BRUSHLESS DC MOTOR AND MODEL CONCEPT

One of the major differences between the DC motor and the BLDC is implied from the name. The conventional DC motor has brushes that are attached to its stator while the “brushless” DC motor does not. Also, unlike the normal DC motor, the commutation of the BLDC could be done by electronic control [3]. Under the BLDC motor, the stator windings are energised in sequence for the motor to rotate. More also, there is no physical contact whatsoever between the stator and the rotor. Another vital part of the BLDC is the hall sensor(s); these hall sensors are systematically attached to the rotor and they are used as major sensing device by the Hall Effect sensors embedded into the stator [3]. This works based on the principle of Hall Effect.

The BLDC motor operates in many modes (phases), but the most common is the 3-phase. The 3-phase has better efficiency and gives quite low torque. Though, it has some cost implications, the 3-phase has a very good precision in control [6]. And this is needful in terms of control of the stator current.

[bookmark: _Toc248224143]Mathematical model of a typical BLDC motor

Typically, the mathematical model of a Brushless DC motor is not totally different from the conventional DC motor. The major thing addition is the phases involved which affects the overall results of the BLDC model. The phases peculiarly affect the resistive and the inductive of the BLDC arrangement. For example, a simple arrangement with a symmetrical 3-phase and “wye” internal connection could give a brief illustration of the whole phase concept.

[bookmark: _Toc248224069]Figure 4.1 – Brushless DC motor schematic diagram

So from the equations 3.20 – 3.22, the difference in the DC and BLDC motors will be shown.

This difference will affect primarily the mechanical and electrical constants as they are very important parts of modelling parameters.

For the mechanical time constant (with symmetrical arrangement), equation 3.21 becomes:

		

		

		(4.1)

The electrical (time constant),

		

		

		(4.2)

Therefore, since there is a symmetrical arrangement and a three phase, the mechanical (known) and electrical constants become:

Mechanical constant,

		

		

		(4.3)

Electrical constant,

		

		

		(4.4)

Considering the phase effects,

		

		

		(4.5)

Equation 4.5 now becomes:

		

		

		(4.6)

Where is the phase value of the EMF (voltage) constant;

Also, there is a relationship between and ; using the electrical power (left hand side) and mechanical power (right hand side) equations; that is:

		

		

		(4.7)

Where,

Therefore, the equation for the BLDC can now be obtained as follow from equation 3.23 by considering the effects of the constants and the phase accordingly.

		

		

		(4.8)

[bookmark: _Toc248224144]MAXON BLDC MOTOR

[bookmark: _Toc248224145]Maxon EC 45 flat 45 mm, brushless DC motor

The BLDC motor provided for this thesis is the EC 45 flat 45 mm, brushless, 30 Watt from Maxon motors [8]. The order number of the motor is 200142. The parameters used in the modeling are extracted from the datasheet of this motor with corresponding relevant parameters used. Find below in Table 5.1 the major extracted parameters used for the modeling task.

		

		Maxon Motor Data

		Unit

		Value

		

		Values at nominal voltage

		

		

		1

		Nominal Voltage

		V

		12.0

		2

		No load Speed

		rpm

		4370

		3

		No load Current

		mA

		151

		4

		Nominal Speed

		rpm

		2860

		5

		Nominal Torque (max. continuous torque)

		mNm

		59.0

		6

		Nominal Current (max. continuous current)

		A

		2.14

		7

		Stall Torque

		mNm

		255

		8

		Starting Current

		A

		10.0

		9

		Maximum Efficiency

		%

		77

		

		Characteristics

		

		

		10

		Terminal Resistance phase to phase

		Ω

		1.20

		11

		Terminal Inductance phase to phase

		mH

		0.560

		12

		Torque Constant

		mNm/A

		25.5

		13

		Speed Constant

		rpm/V

		37.4

		14

		Speed/Torque Gradient

		rpm/mNm

		17.6

		15

		Mechanical time constant

		ms

		17.1

		16

		Rotor Inertia

		gcm2

		92.5

		17*

		Number of phases

		

		3

[bookmark: _Toc248224172]Table 5.1 – BLDC motor parameters used [8]

[bookmark: _Toc248224146]BLDC Maxon Motor Mathematical Model

The mathematical model of the BLDC motor is modelled based on the parameters from table 5.1 using the equation 4.23. This is illustrated below:

		

		

		(6.1.)

So the values for need to calculated to obtain the motor model.

From equation 4.4,

		

		

		(6.2.)

But is a function of R, J, and ,

Where,

R = = 1.2 ;

= 92.5 gcm2 = 9.25 Kgm2;

From equation 4.6, could be obtained:

That is,

Therefore, the G(s) becomes:

		

		

		(6.3.)

The G(s) derived above in the equation 6.3 is the open loop transfer function of the Brushless DC maxon motor using all necessarily sufficient parameters available.

[bookmark: _Toc248224147]OPEN LOOP ANALYSIS OF THE MAXON MOTOR MODEL

The open loop analysis would be done using the MATLAB®/SIMULINK®. And the corresponding stability analysis is given likewise to see the effect thereafter when there is closed loop system incorporation.

[bookmark: _Toc248224148]Open Loop Analysis using MATLAB m-file

With the aid of the BLDC motor parameters provided, the open loop analysis is done by considering the stability factors and making the necessary plots for this analysis. Some of the plots include the step response, root locus, nyquist diagram, and bode plot diagram.

For this, separate m-files were created for the constants, evaluated constants and the main files

constants.m

 (
%
%
 Start of code
% Maxon flat motor parameters used in the modeling
%
% Characteristics parameters
R = 1.2;
% Ohms, Terminal Resistance phase to phase
L = 0.560e-3;
% Henrys, Terminal Inductance phase to phase
Kt = 25.5e-3;
% Nm/A, Torque constant
Ks = 37.4
% rpm/V, Speed constant
tm = 17.1e-3;
% seconds, s, Mechanical Time constant
J = 92.5e-7;
% kg.m^2, Rotor inertia, given in gcm^2
p = 3;
% Number of phases
%
%
 End of code
)

evaluatedconstants.m

 (
%
%
 Start of code
%
% Evaluated parameters not given
%
constants
te = L/(p*R);
% seconds, s, Electrical Time constant
Ke = (3*R*J)/(tm*Kt);
% Back emf constant
%
 End of code
)

topenloop.m

 (
%
%
 Start of code
%
% includes constant parameters
constants

% includes evaluated constants
evaluatedconstants

% Transfer function
G = tf([1/Ke],[tm*te tm 1]);

% Plots the Step Response diagram
figure;
step(G, 0.5);
title(
'Open Loop Step Response diagram'
);
xlabel(
'Time, secs'
)
ylabel(
'Voltage, volts'
)
grid
on
;

% plots the Root-locus
figure;
rlocus(G);
title(
'Open Loop Root Locus diagram'
);
grid
on
;

% plots the Nyquist diagram
figure;
nyquist(G);
title(
'Open Loop Nyquist diagram'
);
grid
on
;

% plots the Bode Plot
figure;
bode(G);
title(
'Open Loop Bode plot diagram 1'
);
grid
on
;

% plots the Bode Plot
figure;
bode(G,{0.1 , 100})
title(
'Open Loop Bode plot diagram with wider frequency spacing'
);
grid
on
;

% plots the Bode Plot
figure;
GD = c2d(G, 0.5)
bode(G,
'r'
, GD,
'b--'
)
title(
'Open Loop Bode plot diagram with discreti
s
ied response'
);
grid
on
;
%
 End of code
)

[image:]

[bookmark: _Ref247393193][bookmark: _Toc248224070]Figure 7.1 – Open Loop Step Response

[image:]

[bookmark: _Toc248224071]Figure 7.2 – Open Loop Step Root Locus with Gain = 0, Overshoot % = 0 and Damping = 1 for both poles

[image:]

[bookmark: _Toc248224072]Figure 7.3 – Open Loop Step Nyquist Diagram

[image:]

[bookmark: _Toc248224073]Figure 7.4 – Open Loop Step Bode Plot Diagram

[bookmark: _Toc248224149]Open Loop Analysis using SIMULINK

Alternatively, the open loop step response could be done by using the SIMULINK tools as shown in figure 7.5 below.

[image:]

[bookmark: _Ref247393240][bookmark: _Toc248224074]Figure 7.5 – Open loop step response simulink arrangement

From the simulation of figure 7.5 and using a step input of at t=1, the following were obtained.

[image:]

[bookmark: _Toc248224075]Figure 7.6 – Step input for the open loop simulink arrangement (at t=1)

[image:]

[bookmark: _Toc248224076]Figure 7.7 – Open loop step response output for the simulink arrangement

With the step response moved to 0.05 for a better display, a joint output of the step input and open loop step response was simulated to give figure 7.8 below. This shows the effect of the system model on the step input.

[image:]

[bookmark: _Ref247431525][bookmark: _Toc248224077]Figure 7.8 – Combined step input and open loop step response span over t=0.5 s

[bookmark: _Toc248224150]PID DESIGN CONCEPT

The Proportional-Integral-Derivative (PID) controller is about the most common and useful algorithm in control systems engineering [7]. In most cases, feedback loops are controlled using the PID algorithm. The main reason why feedback is very important in systems is to be able to attain a set-point irrespective of disturbances or any variation in characteristics of any form.

The PID controller is always designed to correct error(s) between measured process value(s) and a particular desired set-point in a system.

A simple illustration on how the PID works is given below:

Consider the characteristics parameters – proportional (P), integral (I), and derivative (D) controls, as applied to the diagram below in figure 8.1, the system, S is to be controlled using the controller, C; where controller, C efficiency depends on the P, I and D parameters [8].

[bookmark: _Ref247393123][bookmark: _Toc248224078]Figure 8.1 – A typical system with a controller [8]

The controller provides the excitation needed by the system and it is designed to control the overall behaviour of the system.

The PID controller has several categories of structural arrangements. The most common of these are the series and parallel structures and in some cases, there are the hybrid form of the series and the parallel structures.

The following shows the typical illustrative diagrams of common PID controller structures.

Typically, the function of the form shown in equation 8.1 is applicable in this kind of PID controller design.

		

		

		(8.1)

[8].

Where,

[image:]

[bookmark: _Toc248224079]Figure 8.2 – PID parameters schematics

Considering the figure 8.1, variable, e is the sample error, and it is the difference between the desired input value, R and the actual output, Y. In a closed loop, e will be sent to the controller, and the controller will perform the integral and derivative computation on the error signal. Thereafter, the signal, u which is the output of the controller is now equal to the sum of [the product of proportional gain, KP and the magnitude of the error], [the product of the integral gain, KI and the integral of the error] and [the product of the derivative gain, KD and the derivative of the error].

That is,

		

		

		(8.2)

The signal value, u is sent continuously to the plant with every corresponding new output, Y being obtained as the process continues. The output, Y is sent back and subsequently new error signal, e is found and the same process repeats itself on and on.

Also, it is very typical to have the PID transfer function written in several forms depending on the arrangement structure. The following equation shows one of these (a parallel structure):

		

		

		(8.3)

Where,

[bookmark: _Toc247087690][bookmark: _Toc248224151]Some characteristics effects of PID controller parameters

The proportional gain will reduce the rise time and might reduce or remove the steady-state error of the system. The integral gain will eliminate the steady-state error but it might a negative effect on the transient response (a worse response might be produced in this case). And the derivative gain will tend to increase the stability of the system, reducing overshoot percentage, and improving the transient response of the system. In all, the table below will give comprehensive effects of each of the controllers on a typical closed-loop system.

		Parameter

		Rise time

		Overshoot

		Settling time

		Steady-state error

		

		

		

		small change

		

		

		

		

		

		eliminate

		

		small change

		

		

		small change

		

		

		

		

		

		Legend

		

		Decrease

		

		

		

		

		Increase

		

		

[bookmark: _Toc248224173]Table 8.1 – PID controller parameter characteristics on a typical system [8]

The ability to blend these three parameters will make a very efficient and stable system. It should be noted that the relationship between the three controller parameters may not exactly be accurate because of their interdependency. Therefore, it is very possible to compute particular parameters which effects would be noticed on the other two.

[bookmark: _Toc247087691][bookmark: _Toc248224152]PID controller design tips

Designing a PID controller might require some of the following steps to obtain a more efficient and stable system [5]:

1. It is advisable to obtain the open-loop response of the system first and subsequently determine what to improve;

2. Add a proportional gain control to improve the rising time;

3. Then, add a derivative gain to improve the overshoot percentage;

4. And perhaps, add the integral control to eliminate the steady-state error;

5. Thereafter, adjust each of the parameters might be important to achieve an overall desired performance (or output).

And most importantly, all the three PID controller parameters might not be necessarily used in some cases. In most cases, the tuning stops at the PI – control combination.

More also, it should be noted that the major goal of the PID parameters is to obtain a fast rise time with minimum overshoot and no (almost no) steady-state error.

[bookmark: _Toc248224153]PID CONTROLLER TUNING PARAMETERS

Under this section a critical analysis would be done on the PID tuning criteria and the parameters involved. Before a detail analysis is done, a quick look at the tuning methods is considered first and thereafter, specific tuning parameters are computed for the BLDC maxon motor. Some of the generally used tuning methods are the Trial and Error method, the Ziegler-Nichols method (1st), Improved Ziegler-Nichols method (2nd), Cohen-Coon method, Genetic Algorithms and so on. For this work, the Ziegler-Nichols tuning method would be given a priority.

[bookmark: _Toc248224154]The PID arrangement

As a general form, a full schematic of the PID controller arrangement with the System model arrangement is displayed in figure 9.1 as a start for the tuning procedure.

[image:]

[bookmark: _Ref247393274][bookmark: _Toc248224080]Figure 9.1 – PID Schematic for a full PID Controller with System model arrangement

The figure 9.1 is under no saturation, but the saturation is included in figure 9.2. Both figures would be used for our analysis.

[image:]

[bookmark: _Ref247393303][bookmark: _Toc248224081]Figure 9.2 – PID Schematic for a full PID Controller (with saturation) and system model arrangement

For an initial computation, P, PI and PID would be considered in that order to observe the best part for the PID parameters to be obtained.

[bookmark: _Toc248224155]Trial and Error tuning methods

This method is crude but could help in getting an overview of what the PID parameters could be like and their effects on the whole system model. It is particularly time consuming because of its trial and format. But a computational stability rule was needed to set a mark for the trial and effect. This is done by using the Routh-Hurwitz stability rule as shown below. Under this, emphasis would be mainly on the PID combination.

[bookmark: _Toc248224156]The Routh-Hurwitz stability rule

From the various designs needed for this trial, a brief stability check is needed to make the trial and error at the first instance. It would be observed that the only design near the perfect (open-loop – which is without compensation or controller) is the PID. To have a more appropriate trial and error value, the following steps would be followed for only the PID structure.

From the PID controller equation 9.1,

		

		

		(9.1)

Similarly,

		

		

		(9.2)

This is used in the m-file tclosedloopPID_TrialError4.m and it is convuled with the motor model.

Keeping the KP part, with TI and TD set to infinity and zero respectively. A controller gain, KC could be obtained that would sustain the oscillation output. This value serves as the ultimate gain, KCU. For a proper oscillation, KC is set to be less than KCU.

Assumed the figure 9.9 below with a gain of KCU and the system model:

[image:]

[bookmark: _Ref247434843][bookmark: _Toc248224082]Figure 9.3 – Trial and Error PID computation diagram

By obtaining the characteristics equation of the figure 9.9, a limiting gain could be obtained just before sustained oscillation and this is assumed as the KCU.

tclosedloopPID_TrialError4.m

 (
% Start of code
clear
close
all
% includes constant parameters
constants
% includes evaluated constants
evaluatedconstants

num = [1/Ke];
den = [tm*te tm 1];

%Ziegler-Nichols parameter computed
Kp = 13.11;
%Proportional gain
Ki = 0
%1310.6; %Integral gain
Kd = 0
%0.0763; %Derivative gain
% For the PID equation
numc = [Kd Kp Ki];
denc = [1 0];

% convule "num with numc" and "den with demc"
numa = conv(num, numc);
dena = conv(den, denc);

% For the closed-loop transfer function, the following is obtained
% numac and denac used for the overall closed tranfer function in this case
[numac, denac] = cloop(numa, dena);
% Plotting the new step-response
t = 0:0.00001:0.5;
step(numac, denac, t);
% across 0.01 seconds timing
title(
'Closed loop step response for ZN - Kp, Ki and Kd'
);
xlabel(
'Time, [s]'
)
ylabel(
'Voltage, [volts]'
)
%grid on;

% New G1 for overall closed loop trasnfer function
G1 = tf(numac, denac);
% End of code
)

Therefore, we have:

		

		

		(9.3)

		

		

		(9.4)

Equation 9.4 becomes,

		

		

		(9.5)

So for stability purposes, KCU’s range of values could be obtained by using the Routh-Hurwitz condition of stability. This is computed below:

		

		

		

According to Routh-Hurwitz condition, the obtained characteristics equation 9.5 should be spread into column as shown above and the s0 is evaluated as follows (because it has the assumed unknown KCU which would be evaluated):

		

		

		

		

		

		

For stability sake, the 1st column after the s-column must not have any sign change (that is, no change from + to – or – to +). Therefore, , must be greater than zero.

This implied that,

Then,

This implies that KCU has its main value in the positive range. With a rough trial and error tuning, KP, can be fixed to full value of the system model numerator, which is 13.11. The KI and KD were set initially to zero to see the effect of the KP on the system. This resulted into the figure KI about the inverse of 0.0763 = 13.106, and KD = 0.0763. After this,

[bookmark: _Toc232320707][bookmark: _Toc248224157]Proportional control

Based on the M-file – “tclosedloopP.m”, the following figure 9.3, figure 9.4, figure 9.5 and figure 9.6 were obtained as an improvement to the open-loop system. By making an initial raw guess of the value of KP just before applying the Routh-Hurwitz condition.

[image:]

[bookmark: _Ref247393327][bookmark: _Toc248224083]Figure 9.4 – Proportional controller gain effect on the system

[image:]

[bookmark: _Ref247393368][bookmark: _Toc248224084]Figure 9.5 – Root locus diagram for the proportional controller gain effect

[image:]

[bookmark: _Ref247393383][bookmark: _Toc248224085]Figure 9.6 – Nyquist diagram for the proportional controller gain effect

[image:]

[bookmark: _Ref247393396][bookmark: _Toc248224086]Figure 9.7 – Bode plot for the proportional controller gain effect

[image:]

[bookmark: _Toc248224087]Figure 9.8 – Trial and error value used for the P parameters output, with KI and KD set to zero

[image:]

[bookmark: _Toc248224088]Figure 9.9 – Trial and error value used for the P parameters output, with KI and KD set to zero (zoomed display)

The above figure 9.3 – 9.7 show how the proportional controller has reduced the rising time and the steady-state error, the overshoot is reasonably increased but the settling time is also decreased slightly. The subsequent figures show the effects of the trial and error method of tuning applied. The detail analysis would be under the results and analysis section.

[bookmark: _Toc232320708][bookmark: _Toc248224158]Proportional-Integral control

To improve on effect of the KP, an additional KI was also set based on the Routh-Hurwitz condition used above. This is implemented with the same m-file – “tclosedloopPID_TrialError4.m”, the following figures 9.10 – 9.11 was obtained as an added improvement. To make a more visible on the step response, the integral parameter was scaled by 1000 to see its effects, that is, KI= 1310.6. And another “supposed” improvement was also obtained (figures 9.12 – 9.13).

[image:]

[bookmark: _Toc248224089]Figure 9.10 – Trial and error values used for the PI parameters output

[image:]

[bookmark: _Toc248224090]Figure 9.11 – Trial and error values used for the PI parameters output with Kd=0 (zoomed)

[image:]

[bookmark: _Toc248224091]Figure 9.12 – Trial and error values used for the PI parameters output with Ki multiplied 1000 and Kd=0

[image:]

[bookmark: _Toc248224092]Figure 9.13 – Trial and error values used for the PI parameters output with Ki multiplied 1000 and Kd=0 (zoomed)

[bookmark: _Toc232320709][bookmark: _Toc248224159]Proportional-Integral-Derivative control

But for a more critical assessment of the trial and error method, the M-file – “tclosedloopPID_TrialError4.m”, was used to obtain a more perfect output for the system response as shown in the following figure 9.8. Though, all the PID parameters might not be needed sometimes, but it needful to examine it to check the effect and the difference from the other P and PI combinations. For the implementation of the PID guessed parameters based in the trial and error, the KI and KD were set to 1310.6 and 0.0763 respectively. On the first trial the figure – was obtained.

[image:]

[bookmark: _Ref247393505][bookmark: _Toc248224093] Figure 9.14 – Trial and error method for PID – control effect on the system response (first trial with Kd set at 0.0763)

[bookmark: _Toc248224094][image:]Figure 9.15 – Trial and error method for PID – control effect on the system response (first trial with Kd set at 0.0763, zoomed)

The trial and error gave a reasonable level comfort but it is time consuming and requires extra techniques to be able to have guesses that are appropriate and near efficient.

For an overall assessment of the P, PI and PID parameters effect, the following figure was generated for appropriate comparison effects using the UpdatedPPIPID_TrialError.m.

		

		PID Type

		

		

		

		1.

		P

		13.11

		

		0

		2.

		PI

		13.11

		1310.6

		0

		3.

		PID

		13.11

		1310.6

		0.0763

[bookmark: _Toc248224174]Table 9.2 – Results of the Trial and Error method for PID controller parameters

UpdatedPPIPID_TrialError.m

 (
% Start of code
clear
close
all

% includes constant parameters
constants
% includes evaluated constants
evaluatedconstants
num = 1/Ke;
den = [tm*te tm 1];

%----P starts
% assumed Kp = 13.11
Kp1 = 13.11;
numa1 = Kp1 * num;
dena1 = den;

% For the closed-loop transfer function, the following is obtained
% numac and denac used for the overall closed tranfer function in this case
[numac1, denac1] = cloop(numa1, dena1);
%----P ends

%----PI Starts
%Trial and Error tuning parameter Kp and Ki
Kp2 = 13.11;
Ki2 = 1310.6;

% For the PI equation
numc2 = [Kp2 Ki2];
denc2 = [1 0];

% convule "num with numc" and "den with demc"
numa2 = conv(num, numc2);
dena2 = conv(den, denc2);

% For the closed-loop transfer function, the following is obtained
% numac and denac used for the overall closed tranfer function in this case
[numac2, denac2] = cloop(numa2, dena2);
%----PI ends

%----PID Starts
%Trial and Error parameter guessed with support of RH
Kp3 = 13.11;
%Proportional gain
Ki3 = 1310.6;
%Integral gain
Kd3 = 0.0763;
%Derivative gain
% For the PID equation
numc3 = [Kd3 Kp3 Ki3];
denc3 = [1 0];

)

UpdatedPPIPID_TrialError.m (contd.)

 (
% convule "num with numc" and "den with demc"
numa3 = conv(num, numc3);
dena3 = conv(den, denc3);

% For the closed-loop transfer function, the following is obtained
% numac and denac used for the overall closed tranfer function in this case
[numac3, denac3] = cloop(numa3, dena3);
%----PID ends

% Plotting the new step-response
t = 0:0.00001:0.01;

% New G1 for overall closed loop transfer function
G1 = tf(numac1, denac1);

G2 = tf(numac2, denac2);

G3 = tf(numac3, denac3);

% Plots the Step Response diagram
figure;
hold
on
step(G1, t);
hold
on
step(G2, t);
hold
on
step(G3, t);
legend(
'P'
,
'PI'
,
'PID'
);
title(
'Closed Loop PID Trial and Error step response generated for P, PI and PID combinations'
);
xlabel(
'Time, [s]'
)
ylabel(
'Voltage, [volts]'
)
% End of code
)

[image:]

[bookmark: _Toc248224095]Figure 9.16 – Trial and error method for P, PI and PID – control effect on the system response (t-max=0.3s)

[image:]

[bookmark: _Toc248224096]Figure 9.17 – Trial and error method for P, PI and PID – control effect on the system response (t-max=0.1s)

[image:]

[bookmark: _Toc248224097]Figure 9.18 – Trial and error method for P, PI and PID – control effect on the system response (t-max=0.03s)

[image:]

[bookmark: _Toc248224098]Figure 9.19 – Trial and error method for P, PI and PID – control effect on the system response (t-max=0.01s)

[image:]

[bookmark: _Toc248224099]Figure 9.20 – Trial and error method for P, PI and PID – control effect on the system response (1st zooming)

[image:]

[bookmark: _Toc248224100]Figure 9.21 – Trial and error method for P, PI and PID – control effect on the system response (2nd zooming)

[image:]

[bookmark: _Toc248224101]Figure 9.22 – Trial and error method for P, PI and PID – control effect on the system response (3rd zooming)

[bookmark: _Toc248224160]Ziegler-Nichols tuning methods

The Ziegler-Nichols method used was done based on obtaining the open loop transfer function and thereafter obtaining the necessary parameter values needed for the various evaluation of the P, PI and PID parameters. The steps taken involve the files topenloop.m used in conjunction with the openloop.mdl model. So, for the Ziegler-Nichols method analysis the m-file topenloop_zn.m was used accordingly.

The open loop step response is characterized by two main parameters, the L (delay time parameter) and T (time constant). These two parameters are computed by drawing tangents to the open loop step response at its point of inflections (basically two points. The inflection points are particularly done so that there would be an intersection with the vertical (voltage axis, which correlates with the steady-state value) and horizontal (time axis) axes.

Based on the Ziegler-Nichols, the following were derived to obtain the control parameters based on the required model:

		

		PID Type

		

		

		

		1.

		P

		

		

		0

		2.

		PI

		0.9

		

		0

		3.

		PID

		1.2

		

		0.5

[bookmark: _Toc248224175]Table 9.1 – Ziegler-Nichols PID controller parameters model [10]

[image:]

[bookmark: _Ref247393532][bookmark: _Toc248224102]Figure 9.23 – Ziegler-Nichols step response tuning method [10]

From the figure 9.23, the target is on how to evaluate the two parameters (L and T) needed. This is done as follows with the illustration.

topenloop_zn.m

 (
%
% Start of code
%
% includes constant parameters
clear
close
all

%motor constants
constants

% includes evaluated constants
evaluatedconstants

% Transfer function
G = tf([1/Ke],[tm*te tm 1]);

% Plots the Step Response diagram
figure;
step(G, 0.5);
title(
'Open Loop Step Response diagram'
);
xlabel(
'Time, secs'
)
ylabel(
'Voltage, volts'
)
%grid on;

format
long
load
openloop.mat
coeff_x=polyfit([6 10 12],openloop(2,[6 10 12]),1)
coeff_y=polyfit([700:900],openloop(2,[700:900]),1)

for
 n=1:100
 zn_line_x(n)=coeff_x(1)*n+coeff_x(2);
end

for
 n=1:900
 zn_line_y(n)=coeff_y(1)*n+coeff_y(2);
end

figure(2)
hold
on
plot(openloop(2,:),
'red'
)
plot(zn_line_x);
plot((zn_line_y),
'green'
);
legend(
'1step response'
,
'line'
);
grid
on
axis([0 400 0 14]);
l=length(openloop(2,:))
L_samples=roots(coeff_x)

%inflecton_point=intersect(zn_line_x,zn_line_y)
[a,b,c]=intersect(zn_line_x,zn_line_y)

% End of code
)

[image:]

[bookmark: _Ref247393584][bookmark: _Toc248224103]Figure 9.24 – Ziegler-Nichols open step response plot computation

[image:]

[bookmark: _Ref247393593][bookmark: _Toc248224104]Figure 9.25 – Ziegler-Nichols open step response horizontally zoomed

[image:]

[bookmark: _Ref247393601][bookmark: _Toc248224105]Figure 9.26 – Ziegler-Nichols open step response vertically zoomed

Therefore, from the figure 9.24, figure 9.25 and figure 9.26, the values of the L and T could be computed as follows:

An assumed sample rate of 1000 was used for the topenloop_zn.m plots

Point of interception of the horizontal line 4.1 (voltage = 0)

Coordinate of the point of interception of the two lines (T*, K) = (42.7987, 13.1101);

Where,

T* is horizontal trace of the interception on the tangent lines drawn

L = 4.1;

K = 13.1101;

T = T* – L = 4.1 = 42.7987 - 38.6987 38.70

This implies that we have:

L = 0.0041;

K = 13.1101;

T = 0.0387

With the above computation, the P, PI and PID computation was done to get the best suited parameters combination desired.

So the updated table 9.1 would be table 9.2 shown below:

		

		PID Type

		

		

		

		1.

		P

		9.439

		

		0

		2.

		PI

		8.495

		0.0137

		0

		3.

		PID

		11.327

		0.0082

		0.00205

[bookmark: _Toc248224176]Table 9.2 – Results of the Ziegler-Nichols method for PID controller parameters

From table 9.2, the following parameters are obtained based on the equation format (from equation 7.3 above) to become equation 9.1 below:

For P only,

		

		

		(9.1)

For PI only,

		

		

		(9.2)

For PID only,

		

		

		(9.3)

Using the figure 9.1 (above) and m-file tclosedloopP_zn.m, tclosedloopPI_zn.m and tclosedloopPID_zn.m, the outputs of the various PID combinations could be obtained as given below:

tclosedloopP_zn.m

 (
%s
tart of code
clear
close
all

% includes constant parameters
constants
% includes evaluated constants
evaluatedconstants

num = 1/Ke;
den = [tm*te tm 1];

% assumed Kp = 10
Kp = 9.439;
numa = Kp * num;
dena = den;

% For the closed-loop transfer function, the following is obtained
% numac and denac used for the overall closed tran
s
fer function in this case
[numac, denac] = cloop(numa, dena);

% Plotting the new step-response
t = 0:0.00001:0.005
step(numac, denac, t);
% across 0.01 seconds timing
title(
'Closed step response with proportion, P control; Kp = 9.439'
);
xlabel(
'Time, [s]'
)
ylabel(
'Voltage, [volts]'
)
grid
on
;
% New G1 for overall closed loop trasnfer function
G1 = tf(numac, denac);

% plots the Root-locus
figure;
rlocus(G1);
title(
'Closed Loop Root Locus diagram'
);
grid
on
;

% plots the Nyquist diagram
figure;
nyquist(G1);
title(
'Closed Loop Nyquist diagram'
);
grid
on
;

% plots the Bode Plot
figure;
bode(G1,{0.1 , 100})
title(
'Closed Loop Bode plot diagram with wider frequency spacing'
);
grid
on
;
%
end of code
)

[image:]

[bookmark: _Toc248224106]Figure 9.27 – P output for the Ziegler-Nichols tuning method

[image:]

[bookmark: _Toc248224107]Figure 9.28 – P output for the Ziegler-Nichols tuning method root locus output

[image:]

[bookmark: _Toc248224108]Figure 9.29 – P output for the Ziegler-Nichols tuning method Bode plot output

tclosedloopPI_zn.m

 (
% Start of code
clear
close
all
% includes constant parameters
constants
% includes evaluated constants
evaluatedconstants
num = 1/Ke;
den = [tm*te tm 1];

%Ziegler-Nichol tuning parameter Kp and Ki
Kp = 8.495;
Ki = 620.07;

% For the PI equation
numc = [Kp Ki];
denc = [1 0];
% convule "num with numc" and "den with demc"
numa = conv(num, numc);
dena = conv(den, denc);

% For the closed-loop transfer function, the following is obtained
% numac and denac used for the overall closed tranfer function in this case
[numac, denac] = cloop(numa, dena);

% Plotting the new step-response
t = 0:0.00001:0.005
step(numac, denac, t);
% across 0.01 seconds timing
title(
'Closed step response with proportion, P control; Kp = 8.495 and Ki = 620.07'
);
xlabel(
'Time, [s]'
)
ylabel(
'Voltage, [volts]'
)
grid
on
;

% New G1 for overall closed loop trasnfer function
G1 = tf(numac, denac);
% plots the Root-locus
figure;
rlocus(G1);
title(
'Closed Loop Root Locus diagram'
);
grid
on
;
% plots the Nyquist diagram
figure;
nyquist(G1);
title(
'Closed Loop Nyquist diagram'
);
grid
on
;
% plots the Bode Plot
figure;
bode(G1,{0.1 , 100})
title(
'Closed Loop Bode plot diagram with wider frequency spacing'
);
grid
on
;
%e
nd of code
)

[image:]

[bookmark: _Toc248224109]Figure 9.30 – PI output for the Ziegler-Nichols tuning method

tclosedloopPID_zn.m

 (
% Start of code
% includes constant parameters
constants
% includes evaluated constants
evaluatedconstants
num = 1/Ke;
den = [tm*te tm 1];

%Ziegler-Nichols parameter computed
Kp = 11.327;
%Proportional gain
Ki = 1381.34;
%Integral gain
Kd = 0.0232;
%Derivative gain
% For the PID equation
numc = [Kd Kp Ki];
denc = [1 0];

% convule "num with numc" and "den with demc"
numa = conv(num, numc);
dena = conv(den, denc);

% For the closed-loop transfer function, the following is obtained
% numac and denac used for the overall closed tranfer function in this case
[numac, denac] = cloop(numa, dena);
% Plotting the new step-response
t = 0:0.00001:0.3;
step(numac, denac, t);
% across 0.01 seconds timing
title(
'Closed loop step response for ZN - Kp, Ki and Kd'
);
xlabel(
'Time, [s]'
)
ylabel(
'Voltage, [volts]'
)
%grid on;
% New G1 for overall closed loop trasnfer function
G1 = tf(numac, denac);
% plots the Root-locus
figure;
rlocus(G1);
title(
'Closed Loop Root Locus diagram'
);
grid
on
;
% plots the Nyquist diagram
figure;
nyquist(G1);
title(
'Closed Loop Nyquist diagram'
);
grid
on
;
% plots the Bode Plot
figure;
bode(G1,{0.1 , 100})
title(
'Closed Loop Bode plot diagram with wider frequency spacing'
);
grid
on
;
%% End of code
)

[image:]

[bookmark: _Toc248224110]Figure 9.31 – Auto-scaled PID output for the Ziegler-Nichols tuning method

[image:]

[bookmark: _Toc248224111]Figure 9.32 – Auto-scaled PID output for the Ziegler-Nichols tuning method (zoomed overshoot point)

[image:]

[bookmark: _Toc248224112]Figure 9.33 – PID Ziegler-Nichols tuning method Root locus diagram

[image:]

[bookmark: _Toc248224113]Figure 9.34 – PID Ziegler-Nichols tuning method Nyquist diagram

[image:]

[bookmark: _Toc248224114]Figure 9.35 – PID Ziegler-Nichols tuning method Bode plot diagram

For a combined comparison of the Ziegler-Nichols tuning methods for the P, PI and PID, a separate m-file, UpdatedPPIPID_znj.m was created to execute the combination and this was done over different time spans (0.01, 0.03, 0.1 and 0.3). The various outputs figures are shown in figures 9.23, 9.24, 9.25 and 9.26.

UpdatedPPIPID_znj.m

 (
%
% Start of code
%
clear
close
all

% includes constant parameters
constants
% includes evaluated constants
evaluatedconstants
num = 1/Ke;
den = [tm*te tm 1];

%----P starts
% assumed Kp = 10
Kp1 = 9.439;
numa1 = Kp1 * num;
dena1 = den;

% For the closed-loop transfer function, the following is obtained
% numac and denac used for the overall closed tranfer function in this case
[numac1, denac1] = cloop(numa1, dena1);
%----P ends

%----PI Starts
%Ziegler-Nichols parameter computed
%Ziegler-Nichol tuning parameter Kp and Ki
Kp2 = 8.495;
Ki2 = 620.07;

% For the PI equation
numc2 = [Kp2 Ki2];
denc2 = [1 0];

% convule "num with numc" and "den with demc"
numa2 = conv(num, numc2);
dena2 = conv(den, denc2);

% For the closed-loop transfer function, the following is obtained
% numac and denac used for the overall closed tranfer function in this case
[numac2, denac2] = cloop(numa2, dena2);
%----PI ends

%----PID Starts
%Ziegler-Nichols parameter computed
Kp3 = 11.327;
%Proportional gain
Ki3 = 1381.34;
%Integral gain
Kd3 = 0.0232;
%Derivative gain
)

UpdatedPPIPID_znj.m (contd.)

 (
% For the PID equation
numc3 = [Kd3 Kp3 Ki3];
denc3 = [1 0];

% convule "num with numc" and "den with demc"
numa3 = conv(num, numc3);
dena3 = conv(den, denc3);

% For the closed-loop transfer function, the following is obtained
% numac and denac used for the overall closed tranfer function in this case
[numac3, denac3] = cloop(numa3, dena3);
%----PID ends

% Plotting the new step-response
t = 0:0.00001:0.3;

% New G1 for overall closed loop transfer function
G1 = tf(numac1, denac1);

G2 = tf(numac2, denac2);

G3 = tf(numac3, denac3);

% Plots the Step Response diagram
figure;
hold
on
step(G1, t);
hold
on
step(G2, t);
hold
on
step(G3, t);
legend(
'P'
,
'PI'
,
'PID'
);
title(
'Closed Loop PID ZN step response generated for P, PI and PID combinations'
);
xlabel(
'Time, [s]'
)
ylabel(
'Voltage, [volts]'
)
% End of code
)

[image:]

[bookmark: _Toc248224115]Figure 9.36 – Closed loop PID response for P, PI and PID with t-max=0.01s

[image:]

[bookmark: _Toc248224116]Figure 9.37 – Closed loop PID response for P, PI and PID with t-max=0.03

[image:]

[bookmark: _Toc248224117]Figure 9.38 – Closed loop PID response for P, PI and PID with t-max=0.1

[image:]

[bookmark: _Toc248224118]Figure 9.39 – Closed loop PID response for P, PI and PID with t-max=0.3

[image:]

[bookmark: _Toc248224119]Figure 9.40 – Closed loop PID response for P, PI and PID (1st Zoom)

[image:]

[bookmark: _Toc248224120]Figure 9.41 – Closed loop PID response for P, PI and PID (2nd Zoom)

[image:]

[bookmark: _Toc248224121]Figure 9.42 – Closed loop PID response for P, PI and PID (3rd Zoom)

[bookmark: _Toc248224161]Comparison effects of Trial and Error with Ziegler-Nichols tuning methods

This is made by creating m-file, UpdatedPID_TErrznj.m for only the PID parameters effects. The generated figure is as shown below in figure--:

UpdatedPPIPID_TErrznj.m

 (
%
% Start of code
%
clear
close
all

% includes constant parameters
constants
% includes evaluated constants
evaluatedconstants
num = 1/Ke;
den = [tm*te tm 1];

%Trial and Error PID parameters part
TErrorPID
%Ziegler-Nichols PID parameters part
ZNPIDcomp

% Plotting the new step-response
t = 0:0.00001:0.03;

% New G for overall closed loop transfer function
GZN = tf(numacZN, denacZN);

GTErr = tf(numacTErr, denacTErr);

% Plots the Step Response diagram
figure;
hold
on
step(GZN, t);
hold
on
step(GTErr, t);

legend(
'Trial and Error PID'
,
'Ziegler-Nichols PID'
);
title(
'Closed Loop PID for Trial and Error/Ziegler-Nichols step response output for PID'
);
xlabel(
'Time, [s]'
)
ylabel(
'Voltage, [volts]'
)
% End of code
)

[image:]

[bookmark: _Toc248224122]Figure 9.43 – Closed loop response for Trial and Error/Ziegler-Nichols tuning methods

[image:]

[bookmark: _Toc248224123]Figure 9.44 – Closed loop response for Trial and Error/Ziegler-Nichols tuning methods (1st zoomed)

[image:]

[bookmark: _Toc248224124]Figure 9.45 – Closed loop response for Trial and Error/Ziegler-Nichols tuning methods (2nd zoomed, right side)

[image:]

[bookmark: _Toc248224125]Figure 9.46 – Closed loop response for Trial and Error/Ziegler-Nichols tuning methods (3rd zoomed, left side, with t-max=0.03)

[bookmark: _Toc248224162]FOOTBALL PITCH LAYOUT MODEL

[bookmark: _Toc248224163]Dimensions of the Pitch

The football pitch model serves as the background for the main plot of the trajectory path of the robot wheel. The basic dimensions (in millimetres) used are given below and are scaled down to metres in the model plot.

		

		Part Label

		Dimension (mm)

		1.

		Length

		6050

		2.

		Width

		4050

		3.

		Centre circle (radius)

		500

[bookmark: _Toc248224177]Table 10.1 – Dimensions of the Football pitch layout model

The figure 10.1 below shows the main target design based on the Laws of the F180 League 2009 [12]. The needed design for the thesis is the main pitch shown in white lines.

[image:]

[bookmark: _Ref247446403][bookmark: _Toc248224126]Figure 10.1 – Dimension of the standard pitch required [12]

[bookmark: _Toc248224164]Football pitch MATLAB design implementation

The figure 10.2 shows the full part label of the football pitch layout. But the main target design is shown in figure 10.1. This follows with the m-files used to generate the whole pitch layout robotpatternUpdated.m, newFieldSpec.m, robotBlockpart.m, semiCircleBottomLeft.m, semiCircleBottomRight.m, semiCircleTopLeft.m, semiCircleTopRight.m and testcir2.m (for centre circle plot) used to generate the actual design and shown in figure 10.2.

The output football pitch generated is given under figure 10.3 below.

[image:]

[bookmark: _Ref247393759][bookmark: _Toc248224127]Figure 10.2 – Part label of the Football pitch layout model

testcir2.m

 (
%draw circle code
%resolution of plot
t = linspace(0,2*pi,100000);

%assumed centre of the circle (cirX, cirY): sets at origin (0, 0)
cirX=30.25;
cirY=20.25;

%radius of the centre circle, 500mm=5m
r=5;

%circle dual equations
x = r*cos(t)+cirX;
y = r*sin(t)+cirY;

plot(x,y,
'Color'
,
'black'
);
%end of code
)

semiCircleBottomLeft.m

 (
%draw circle code
%resolution of plot
t2 = linspace(2*pi, 3*pi/2,100000);
%assumed centre of the circle (cirX, cirY): sets at origin (0, 0)
cirX2=0;
cirY2=18.50;

%radius of the centre circle, 500mm=5m
r=5;

%circle dual equations
x2 = r*cos(t2)+cirX2;
y2 = r*sin(t2)+cirY2;

plot(x2, y2,
'Color'
,
'black'
)

%end of code
)

semiCircleBottomRight.m

 (
%draw circle code
%resolution of plot
t3 = linspace(pi, 3*pi/2,100000);
%assumed centre of the circle (cirX, cirY): sets at origin (0, 0)
cirX3=60.50;
cirY3=18.50;

%radius of the centre circle, 500mm=5m
r=5;

%circle dual equations
x3 = r*cos(t3)+cirX3;
y3 = r*sin(t3)+cirY3;

plot(x3, y3,
'Color'
,
'black'
)

%end of code
)

semiCircleTopLeft.m

 (
%draw circle code
%resolution of plot
t1 = linspace(0, pi/2,100000);
%assumed centre of the circle (cirX, cirY): sets at origin (0, 0)
cirX1=0;
cirY1=22.00;

%radius of the centre circle, 500mm=5m
r=5;

%circle dual equations
x1 = r*cos(t1)+cirX1;
y1 = r*sin(t1)+cirY1;

plot(x1, y1,
'Color'
,
'black'
)

%end of code
)

semiCircleTopRight.m

 (
%draw circle code
%resolution of plot
t4 = linspace(pi/2, pi, 100000);
%assumed centre of the circle (cirX, cirY): sets at origin (0, 0)
cirX4=60.50;
cirY4=22.00;
%radius of the centre circle, 500mm=5m
r=5;
%circle dual equations
x4 = r*cos(t4)+cirX4;
y4 = r*sin(t4)+cirY4;
plot(x4, y4,
'Color'
,
'black'
)
%end of code
)

robotpatternUpdated.m

 (
%refreshes figures for new ones
clear
close
all

%activities needed on the robot field layout

%test plot sample
%---
%---
len=100;
robot=zeros(1,len);

%start position
X(1)=-40;
Y(1)=-40;

%move to cordinates
x_goal=0;
y_goal=0;

%
%just something to plot
%this will be for the actual robot movement path
%
for
 n=1:len
 robot(n)=sin(n)+10;
end
%

%plot robot movement
hold
on
plot(robot,
'Color'
,
'red'
)

%plot the robot pitch layout
newFieldSpec
)

[image:]

[bookmark: _Ref247393775][bookmark: _Toc248224128]Figure 10.3 – Generated football pitch model using robotpatternUpdated.m

[bookmark: _Toc248224165]ROBOT 4-WHEEL MOTOR MODEL TRAJECTORY PLANNING

This part involves the cascaded arrangement of all the four wheels with connection to the corresponding system blocks affecting the overall performance of the robot path movement. The block arrangement used is as shown in figure 11.1 below:

After the necessary planning was done, the path simulation would be done on the football model developed with the MATLAB.

[bookmark: _Ref247393813][bookmark: OLE_LINK7][bookmark: OLE_LINK8][bookmark: _Toc248224129]Figure 11.1 – Full robot implementation block

The robot wheels have the following wheel arrangement as shown in figure below figure 11.3 below: the wheels motors are in an asymmetrical arrangement; this is a prototype drawing from the figure 11.2. With radian evaluation, the angles p1, p2, p3 and p4 are related to the angle of the wheel axis – 53O, 53O, 45O, and 45O. The whole evaluations as regards this were done in the codes – robotBlockpart.m, robotControllLogic.m, veloToWheel.m, wheelPIDs.m, and speedToXY.m based on figure 11.1 implementation plan.

[image:]

[bookmark: _Toc248224130]Figure 11.2 – An extract from “Omnidirectional control” [13]

[bookmark: _Toc248224131]Figure 11.3 – Asymmetrical robot wheel arrangement based on the Omnidirectional robot control

robotTrajectoryPlan.m

 (
%plots robot trajectory path
clear
close
all
len=100;
robot=zeros(1,len);

X=zeros(1,100);Y=zeros(1,100);

%start position
X(1)=25;Y(1)=25;
a1(1)=0;a2(1)=0;a3(1)=0;a4(1)=0;
a1(2)=0;a2(2)=0;a3(2)=0;a4(2)=0;
a1(3)=0;a2(3)=0;a3(3)=0;a4(3)=0;

%move to cordinates
x_goal=0;y_goal=0;

n=1;k=3;
robotGain=0.00001;

%inlcudes motor constants
constants
% includes evaluated constants
evaluatedconstants

num = 1/Ke;
den = [tm*te tm 1];

%Ziegler-Nichols parameter computed
Kp = 11.327;
%Proportional gain
Ki = 1381.34;
%Integral gain
Kd = 0.0232;
%Derivative gain
% For the PID equation
numc = [Kd Kp Ki];
denc = [1 0];

% convule "num with numc" and "den with demc"
numa = conv(num, numc);
dena = conv(den, denc);

sys = tf(numa,dena,1/1000);

integrationSums=[0, 0, 0, 0];

% robot block parts
robotBlockpart

%plot robot movement
hold
on
plot(X,Y);

%plot the robot pitch layout
newFieldSpec
)

robotBlockpart.m

 (
while
 n==1

%done?

%robot control logic - BLOCK 1
 [Vx(k),Vy(k),Vp(k)]=robotControlLogic(X(k-1),Y(k-1),x_goal,y_goal,robotGain);

%Done

%transformation block - BLOCK 2

%transformation matrix from velocity vector to wheelspeeds
 [w1(k),w2(k),w3(k),w4(k)] = veloToWheel(Vx(k),Vy(k),Vp(k),X(k-1),Y(k-1));

%Done

%Wheel PIDs - BLOCK 3

%the idividual PID controllers for the wheels including wheelmotor model
 temp=integrationSums;
 oldArray=[a1(k-1),a2(k-1),a3(k-1),a4(k-1)];
 oldoldArray=[a1(k-2),a2(k-2),a3(k-2),a4(k-2)];
 [a1(k),a2(k),a3(k),a4(k),integrationSums]=wheelPIDs(w1(k),w2(k),w3(k),w4(k),temp,oldArray,oldoldArray);

%motor model

%Done

%robot position - BLOCK 4

%converts actua
l wheel motor speed to robot X Y
position
 [X(k),Y(k)]=speedToXY(a1(k),a2(k),a3(k),a4(k),X(k-1),Y(k-1));

%check if close enough to the goal co
o
rdinates

if
 abs(X(k)-x_goal)<0.1
%% && abs(Y(k)-y_goal)<0.1
 n=0;

end

if
 abs(Y(k)-y_goal)<0.1
%% && abs(Y(k)-y_goal)<0.1
 n=0;

end

if
 abs(X(k))>41
 n=0;

end

if
 abs(Y(k))>41
 n=0;

end

if
 k>99
 n=0;

end

%increment loop index
 k=k+1;
end
)

This will take the main part of the planning and trajectory simulation

robotControlLogic.m

 (
function
 [Vx,Vy,Vp]=robotControlLogic(X,Y,x_goal,y_goal,k)

 Mag_x=x_goal-X;
 Mag_y=y_goal-Y;

 M=sqrt(Mag_x^2+Mag_y^2);

 Vx=k*Mag_x/M;
 Vy=k*Mag_y/M;

Vp=0;

end
)

wheelPIDs.m

 (
function
 [a1,a2,a3,a4,intSums]=wheelPIDs(w1,w2,w3,w4,intSumsIn,y_old,y_oldold)

%actual PIDs here

%Ziegler-Nichols parameter computed
 Kp = 11.327;
%Proportional gain
 Ki = 1381.34;
%Integral gain
 Kd = 0.0232;
%Derivative gain

 inputs=[w1, w2, w3, w4];

%certainty problem

for
 n=1:4
 PIDin=inputs(n);
 sumIn=intSumsIn(n);

 [y,sumOut]=myPID(PIDin,y_old(n),y_oldold(n),sumIn);

 intSums(n)=sumOut;
 outputs(n)=y;

end

 a1=outputs(1);
 a2=outputs(2);
 a3=outputs(3);
 a4=outputs(4);
end
)

speedToXY.m

 (
function
 [X,Y]=speedToXY(a1,a2,a3,a4,Xold,Yold)
%Calculate X Y position based on actual wheelspeeds since last sample
% |W1| |Vx|
% |W2| -> |Vy|
% |W3| |Vp|
% |W4|

%Angle of each wheel in Rad, these angles does not change in this simulation
p1=2.49582083;
%143 deg
p2=3.92699082;
%225 deg
p3=5.49778714;
%315 deg
p4=0.645771823;
%37 deg

%Co-ordinates of each wheel in Meter
[x1,x2,x3,x4,y1,y2,y3,y4]=wheelsXYfromXY(Xold,Yold,p1,p2,p3,p4);

if
 1

%actual wheel

speeds...
 W=[a1, a2, a3, a4];

%transformation matrix
 A=[cos(p1),sin(p1),(-y1*cos(p1)+x1*sin(p1)),1;
 cos(p2),sin(p2),(-y2*cos(p2)+x2*sin(p2)),1;
 cos(p3),sin(p3),(-y3*cos(p3)+x3*sin(p3)),1;
 cos(p4),sin(p4),(-y4*cos(p4)+x4*sin(p4)),1];
 inversA=inv(A);

else

%actual wheel speeds
…
 W=[a1, a2, a3];
 A=[cos(p1),sin(p1),(-y1*cos(p1)+x1*sin(p1));
 cos(p2),sin(p2),(-y2*cos(p2)+x2*sin(p2));
 cos(p3),sin(p3),(-y3*cos(p3)+x3*sin(p3));
 cos(p4),sin(p4),(-y4*cos(p4)+x4*sin(p4))];
 inversA=inv(A);

end

%use the inverse of A here since matrix division is not allowed

 B=W*inversA;

%??
X=Xold+B(1);
Y=Yold+B(2);
%rotation=B3(3); this is not needed if rotation is omitted
end
)

veloToWheel.m

 (
function
 [w1,w2,w3,w4] = veloToWheel(Vx,Vy,Vp,X,Y)
%Calculate the individual wheelspeed based on the three component
%vector velocity of the robot
%|Vx| |W1|
%|Vy| -> |W2|
%|Vp| |W3|
% |W4|
%Desired speed vectors
%Angle of each wheel in Rad
p1=2.49582083;
%143 deg
p2=3.92699082;
%225 deg
p3=5.49778714;
%315 deg
p4=0.645771823;
%37 deg

%Co-ordinates of each wheel in Meter
[x1,x2,x3,x4,y1,y2,y3,y4]=wheelsXYfromXY(X,Y,p1,p2,p3,p4);

if
 0

%Wheel 1
 x1=0.0677;y1=0.0511;

%Wheel 2
 x2=-0.0599;y2=0.0596;

%Wheel 3
 x3=-0.0599;y3=-0.0596;

%Wheel 4
 x4=0.0677;y4=-0.0511;
end

%Transformation Matrix
A=[cos(p1),sin(p1),(-y1*cos(p1)+x1*sin(p1));
 cos(p2),sin(p2),(-y2*cos(p2)+x2*sin(p2));
 cos(p3),sin(p3),(-y3*cos(p3)+x3*sin(p3));
 cos(p4),sin(p4),(-y4*cos(p4)+x4*sin(p4));];

%3 component vector matrix
B=[Vx;Vy;Vp];
W=(A*B);
%Matrix solution giving result for velocity of each wheel
w1=W(1);
w2=W(2);
w3=W(3);
w4=W(4);
end
)

[image:]

[bookmark: _Ref247967090][bookmark: _Toc248224132]Figure 11.4 – The output of the robot path plotting

The blue line in figure 11.4 shows the planned path of the robot trajectory.

[bookmark: OLE_LINK5][bookmark: OLE_LINK6]

[bookmark: _Toc248224166]CONCLUSION, CHALLENGES AND RECOMMENDATION

[bookmark: _Toc248224167]Conclusion

In this work, the PID controller was used as a vital technical tool used in system modelling and control. It started with the analysis and reasons why an absolute précised control is important in drives particularly the BLDC motors and then the mathematical modelling. Also, the use of the MATLAB®/SIMULINK® to develop the robot football pitch model and the trajectory planning were additional parts to this work.

[bookmark: _Toc248224168]Challenges

Some of challenges faced include: the intensive study of MATLAB®/SIMULINK® and the various modelling techniques. More also, the knowledge of mathematical methods was needed to enhanced my modelling ability in this thesis as it required more mathematical skills. In additional, some of areas of control systems engineering had to be studied to have a blend of understanding in the areas of system stability. And one major challenging part was the aspect of model the path of the robot from one point to another. This part required some advanced mathematical skills which could not be implemented. A straight path was gotten in the trajectory simulation.

[bookmark: _Toc248224169]Recommendations – Possible improvement

This work could be improved by incorporating the hardware testing and possible laboratory testing. Also, to have a more précised PID parameters, new methods of PID tuning (the use of genetic algorithms) could be employed for optimal values. In addition to the use of PID controller, another instance of Single-Input-Single-Output (SISO) could be used under the MATLAB versatile toolbox.

More also, the real testing and program implementation of the BLDC motor could be harnessed by using the MATLAB®/SIMULINK® utilities and being able to incorporate C-programming with the microcontroller. And more technical resources should be available to the student for proper execution of the work.

[bookmark: _Toc248224170]REFERENCES

[1] Siemens Training Education Program, STEP 2000 Series, “Basics of DC drives and related products”.

[2] Crouzet motor manuals, “Some principles of DC motors”.

[3] Microchip Technology Incorporated 2003, Padmaraja Yedamale, “Brushless DC motor fundamentals”.

[4] P. C. Sen. Principles of Electric Machines and Power Electronics. John Wiley & Sons, 1997.

[5] Carnegie-Mellon University and University of Michigan Online resources – Control Tutorials for MATLAB: PID Tutorial. Accessed 25th February 2009.

[6] Texas Instruments Incorporated. DSP Solutions for BLDC Motors, 1997.

[7] Åstrom, K and Hägglund, T (1994), PID controllers: theory, design and tuning. 2nd edition.

[8] Maxon EC motor, May 2008 edition, EC 45 flat 45 mm, brushless, 30 Watt Maxon flat motor.

[9] MATLAB/SIMULINK Documentations (Help file)

[10] Brian R Copeland , The Design of PID Controllers using Ziegler Nichols Tuning, 2008

[11] George W. Younkin, Electric Servo-motor equations and time constants.

[12] The Laws of the F180 League 2009 – Small sized robocup league

[13] Raul Rojas, Omnidirectional control, Updated 18 May, 2005.

[bookmark: _Toc248224171]APPENDIX

contants.m, 25

evaluatedconstants.m, 25

topenloop.m, 26

UpdatedPPIPID_TrialError4.m, 39

UpdatedPPIPID_TrialError.m, 49

topenloop_zn, 56

topenloopP_zn, 60

topenloopPI_zn, 63

topenloopPID_zn, 65

UpdatedPPIPID_znj.m, 69

UpdatedPPIPID_TErrznj.m, 75

testcir2.m, 80

semiCircleBottomLeft.m, 80

semiCircleBottomRight.m, 81

semiCircleTopLeft.m, 81

semiCircleTopRight.m, 82

robotpatternUpdated.m, 82

robotTrajectoryplan.m, 87

robotBlockpart.m, 88

robotControlLogic.m, 89

wheelPIDs.m, 89

speedToXY.m, 90

veloToWheel.m, 91

image2.emf

Magnet

Rotor

Brush

Commutator

Shaft

oleObject1.bin

Magnet

Rotor

Brush

Commutator

Shaft

image3.emf

DC

Motor

Controlled

Rectifiers

Firing Circuit, with

firing angle

Control

Signal

Supply, single or

3 phases

oleObject2.bin

DC
Motor

Controlled Rectifiers

Firing Circuit, with firing angle

Control
Signal

Supply, single or 3 phases

image4.emf

M

L

i

R

+

oleObject3.bin

￼

L

i

R

+

image5.emf

L

i

R

e=k

e

w

m

+

DC

Motor

Inertia

Load, J

Torque Angular rate

Viscous friction

oleObject4.bin

image6.emf

DC

Motor

Inertia

Load, J

Torque Angular rate

Viscous friction

L

R

L

R

L

R

R

L-L

K

e

L-L

oleObject5.bin

image7.emf

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0

2

4

6

8

10

12

14

System: G

Time (sec): 0.097

Amplitude: 13.1

Open Loop Step Response diagram

Time, secs (sec)

Voltage, volts

image8.emf

-7000 -6000 -5000 -4000 -3000 -2000 -1000 0 1000

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

0.16 0.34 0.5 0.64 0.76 0.86

0.94

0.985

0.16 0.34 0.5 0.64 0.76 0.86

0.94

0.985

1e+003 2e+003 3e+003 4e+003 5e+003 6e+003

7e+003

System: G

Gain: 0

Pole: -6.37e+003

Damping: 1

Overshoot (%): 0

Frequency (rad/sec): 6.37e+003

System: G

Gain: 0

Pole: -59

Damping: 1

Overshoot (%): 0

Frequency (rad/sec): 59

Open Loop Root Locus diagram

Real Axis

Imaginary Axis

image9.emf

-2 0 2 4 6 8 10 12 14

-8

-6

-4

-2

0

2

4

6

8

0 dB

-10 dB

-6 dB

-4 dB

-2 dB

10 dB

6 dB

4 dB

2 dB

Open Loop Nyquist diagram

Real Axis

Imaginary Axis

image10.emf

16

18

20

22

24

Magnitude (dB)

10

-1

10

0

10

1

10

2

-90

-60

-30

0

Phase (deg)

Open Loop Bode plot diagram with wider frequency spacing

Frequency (rad/sec)

image11.emf

To file1

stepout.mat

To file

openloop.mat

Step Input Display

Step

input

Open Loop

Step Response Display

Motor Transfer Function

13.11

2.66e-6s +0.0171s+1

2

image12.emf

0 0.5 1 1.5 2 2.5 3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time, t, seconds

Amplitude

image13.emf

0 0.5 1 1.5 2 2.5 3

0

2

4

6

8

10

12

14

Time, t, seconds

Amplitude

image14.emf

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0

2

4

6

8

10

12

14

Time, [s]

Voltage, [volts]

Open Loop step response generated with SIMULINK

Step input

Open Loop step response

image15.emf

CONTROLLER SYSTEM

R

Y

+

-

e u

oleObject6.bin

CONTROLLER

SYSTEM

R

Y

+

-

e

u

image16.png

setioput

=

image17.emf

To File

PIDFull.mat

System Model - Transfer Function

13.11

2.66e-6s +0.0171s+1

2

Step

input

Scope

PID Controller

PID

image18.emf

To File1

PIDSatura.mat

To File

PIDOutputResponse.mat

System Model Transfer Function

13.11

2.66e-6s +0.0171s+1

2

Step

input

Scope1

Scope

Saturation

PID Controller

PID

image19.emf

Ultimate Gain, Kcu

In1

Out1

System Model - Transfer Function

13.11

2.66e-6s +0.0171s+1

2

Step

input

Scope

image20.emf

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10

-3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

New step response with proportion, P control; Kp = 10

Time, secs (sec)

Voltage, volts

image21.emf

-6000 -5000 -4000 -3000 -2000 -1000 0 1000

-3

-2

-1

0

1

2

3

x 10

4

0.042 0.065 0.095 0.135

0.2

0.3

0.55

5e+003

1e+004

1.5e+004

2e+004

2.5e+004

3e+004

5e+003

1e+004

1.5e+004

2e+004

2.5e+004

3e+004

0.02 0.042 0.065 0.095 0.135

0.2

0.3

0.55

0.02

Closed Loop Root Locus diagram

Real Axis

Imaginary Axis

image22.emf

-1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

0 dB

-20 dB

-10 dB

-6 dB

-4 dB

-2 dB

20 dB

10 dB

6 dB

4 dB

2 dB

Closed Loop Nyquist diagram

Real Axis

Imaginary Axis

image23.emf

-0.0665

-0.066

-0.0655

-0.065

Magnitude (dB)

10

-1

10

0

10

1

10

2

-0.8

-0.6

-0.4

-0.2

0

Phase (deg)

Closed Loop Bode plot diagram with wider frequency spacing

Frequency (rad/sec)

image24.emf

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Closed loop step response for ZN - Kp, Ki and Kd

Time, [s] (sec)

Voltage, [volts]

image25.emf

-0.02 0 0.02 0.04 0.06 0.08

0.8

0.9

1

1.1

1.2

1.3

Closed loop step response for ZN - Kp, Ki and Kd

Time, [s] (sec)

Voltage, [volts]

image26.emf

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Closed loop step response for ZN - Kp, Ki and Kd

Time, [s] (sec)

Voltage, [volts]

image27.emf

-0.01 0 0.01 0.02 0.03 0.04 0.05

0.7

0.8

0.9

1

1.1

1.2

Closed loop step response for ZN - Kp, Ki and Kd

Time, [s] (sec)

Voltage, [volts]

image28.emf

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Closed loop step response for ZN - Kp, Ki and Kd

Time, [s] (sec)

Voltage, [volts]

image29.emf

-5 0 5 10 15 20 25

x 10

-3

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

Closed loop step response for ZN - Kp, Ki and Kd

Time, [s] (sec)

Voltage, [volts]

image30.emf

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Closed loop step response for ZN - Kp, Ki and Kd

Time, [s] (sec)

Voltage, [volts]

image31.emf

-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05 0.06

0.8

0.85

0.9

0.95

1

1.05

1.1

Closed loop step response for ZN - Kp, Ki and Kd

Time, [s] (sec)

Voltage, [volts]

image32.emf

0 0.05 0.1 0.15 0.2 0.25 0.3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Closed Loop PID Trial and Error step response generated for P, PI and PID combinations

Time, [s] (sec)

Voltage, [volts]

P

PI

PID

image33.emf

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Closed Loop PID Trial and Error step response generated for P, PI and PID combinations

Time, [s] (sec)

Voltage, [volts]

P

PI

PID

image34.emf

0 0.005 0.01 0.015 0.02 0.025 0.03

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Closed Loop PID Trial and Error step response generated for P, PI and PID combinations

Time, [s] (sec)

Voltage, [volts]

P

PI

PID

image35.emf

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Closed Loop PID Trial and Error step response generated for P, PI and PID combinations

Time, [s] (sec)

Voltage, [volts]

P

PI

PID

image36.emf

0 1 2 3 4 5

x 10

-3

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Closed Loop PID Trial and Error step response generated for P, PI and PID combinations

Time, [s] (sec)

Voltage, [volts]

P

PI

PID

image37.emf

-5 0 5 10 15 20

x 10

-4

0.6

0.7

0.8

0.9

1

1.1

1.2

Closed Loop PID Trial and Error step response generated for P, PI and PID combinations

Time, [s] (sec)

Voltage, [volts]

P

PI

PID

image38.emf

0 2 4 6 8 10 12 14 16 18

x 10

-4

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

Closed Loop PID Trial and Error step response generated for P, PI and PID combinations

Time, [s] (sec)

Voltage, [volts]

P

PI

PID

image39.png

A
() Tangent line at inflection point

K >

> L «— 7 —»

image40.emf

0 50 100 150 200 250 300 350 400

0

2

4

6

8

10

12

14

Time, secs

Voltage, volts

Ziegler-Nichols Open Loop Step Response diagram

step response

line intercept with t, axis

line intercept with voltage, axis

image41.emf

3.75 3.8 3.85 3.9 3.95 4 4.05 4.1 4.15 4.2

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

Time, secs

Voltage, volts

Ziegler-Nichols Open Loop Step Response diagram

step response

line intercept with t, axis

line intercept with voltage, axis

image42.emf

42.7987 42.7987 42.7987 42.7987 42.7987 42.7987 42.7987

13.1101

13.1101

13.1101

13.1101

13.1101

13.1101

13.1101

Time, secs

Voltage, volts

Ziegler-Nichols Open Loop Step Response diagram

step response

line intercept with t, axis

line intercept with voltage, axis

image43.emf

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10

-3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Closed step response with proportion, P control; Kp = 9.439

Time, [s] (sec)

Voltage, [volts]

image44.emf

-6000 -5000 -4000 -3000 -2000 -1000 0 1000

-3

-2

-1

0

1

2

3

x 10

4

0.042 0.065 0.095 0.135

0.2

0.3

0.55

5e+003

1e+004

1.5e+004

2e+004

2.5e+004

3e+004

5e+003

1e+004

1.5e+004

2e+004

2.5e+004

3e+004

0.02 0.042 0.065 0.095 0.135

0.2

0.3

0.55

0.02

Closed Loop Root Locus diagram

Real Axis

Imaginary Axis

image45.emf

-0.07

-0.0695

-0.069

-0.0685

Magnitude (dB)

10

-1

10

0

10

1

10

2

-0.8

-0.6

-0.4

-0.2

0

Phase (deg)

Closed Loop Bode plot diagram with wider frequency spacing

Frequency (rad/sec)

image46.emf

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10

-3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Closed step response with proportion, P control; Kp = 8.495 and Ki = 620.07

Time, [s] (sec)

Voltage, [volts]

image47.emf

0 0.05 0.1 0.15 0.2 0.25 0.3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Closed loop step response for ZN - Kp, Ki and Kd

Time, [s] (sec)

Voltage, [volts]

image48.emf

-0.005 0 0.005 0.01 0.015 0.02 0.025 0.03

0.85

0.9

0.95

1

1.05

Closed loop step response for ZN - Kp, Ki and Kd

Time, [s] (sec)

Voltage, [volts]

image49.emf

-2.5 -2 -1.5 -1 -0.5 0 0.5

x 10

5

-1.5

-1

-0.5

0

0.5

1

1.5

x 10

4

0.999

1

1

0.86 0.965 0.986 0.993 0.996 0.998

0.999

1

1

5e+004 1e+005 1.5e+005 2e+005

2.5e+005

0.86 0.965 0.986 0.993 0.996 0.998

Closed Loop Root Locus diagram

Real Axis

Imaginary Axis

image50.emf

-1 -0.5 0 0.5 1 1.5

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 dB

-20 dB

-10 dB

-6 dB -4 dB -2 dB

20 dB

10 dB

6 dB 4 dB2 dB

Closed Loop Nyquist diagram

Real Axis

Imaginary Axis

image51.emf

0

0.005

0.01

0.015

0.02

0.025

Magnitude (dB)

10

-1

10

0

10

1

10

2

-0.8

-0.6

-0.4

-0.2

0

Phase (deg)

Closed Loop Bode plot diagram with wider frequency spacing

Frequency (rad/sec)

image52.emf

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Closed Loop PID ZN step response generated for P, PI and PID combinations

Time, [s] (sec)

Voltage, [volts]

P

PI

PID

image53.emf

0 0.005 0.01 0.015 0.02 0.025 0.03

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Closed Loop PID ZN step response generated for P, PI and PID combinations

Time, [s] (sec)

Voltage, [volts]

P

PI

PID

image54.emf

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Closed Loop PID ZN step response generated for P, PI and PID combinations

Time, [s] (sec)

Voltage, [volts]

P

PI

PID

image55.emf

0 0.05 0.1 0.15 0.2 0.25 0.3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Closed Loop PID ZN step response generated for P, PI and PID combinations

Time, [s] (sec)

Voltage, [volts]

P

PI

PID

image56.emf

-0.02 -0.01 0 0.01 0.02 0.03 0.04

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

Closed Loop PID ZN step response generated for P, PI and PID combinations

Time, [s] (sec)

Voltage, [volts]

P

PI

PID

image57.emf

-0.005 0 0.005 0.01 0.015 0.02 0.025

0.9

0.95

1

1.05

1.1

1.15

1.2

Closed Loop PID ZN step response generated for P, PI and PID combinations

Time, [s] (sec)

Voltage, [volts]

P

PI

PID

image58.emf

-4 -2 0 2 4 6 8

x 10

-3

0.92

0.94

0.96

0.98

1

1.02

1.04

Closed Loop PID ZN step response generated for P, PI and PID combinations

Time, [s] (sec)

Voltage, [volts]

P

PI

PID

image59.emf

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Closed Loop PID for Trial and Error/Ziegler-Nichols step response output for PID

Time, [s] (sec)

Voltage, [volts]

Trial and Error PID

Ziegler-Nichols PID

image60.emf

0 1 2 3 4 5 6

x 10

-3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Closed Loop PID for Trial and Error/Ziegler-Nichols step response output for PID

Time, [s] (sec)

Voltage, [volts]

Trial and Error PID

Ziegler-Nichols PID

image61.emf

0 1 2 3 4 5 6 7 8

x 10

-3

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

Closed Loop PID for Trial and Error/Ziegler-Nichols step response output for PID

Time, [s] (sec)

Voltage, [volts]

Trial and Error PID

Ziegler-Nichols PID

image62.emf

0.011 0.012 0.013 0.014 0.015 0.016 0.017

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

Closed Loop PID for Trial and Error/Ziegler-Nichols step response output for PID

Time, [s] (sec)

Voltage, [volts]

Trial and Error PID

Ziegler-Nichols PID

image63.emf

image64.emf

-30 -20 -10 0 10 20 30

-20

-15

-10

-5

0

5

10

15

20

Inner Box '18'

Length of the

Pitch

Width of the

Pitch

Centre Circle

Outer Box '18'

image65.emf

0 10 20 30 40 50 60

0

5

10

15

20

25

30

35

40

image1.png

.. VAASAN AMMATTIKORKEAKOULU
“... VASA YRKESHOGSKOLA
’ UNIVERSITY OF APPLIED SCIENCES

image66.emf

R

O

B

O

T

L

O

G

I

C

C

O

N

T

R

O

L

L

E

R

T

R

A

N

S

F

O

R

M

A

T

I

O

N

B

L

O

C

K

W

H

E

E

L

P

I

D

s

M

O

T

O

R

M

O

D

E

L

S

R

O

B

O

T

P

O

S

I

T

I

O

N

V

x

w

1

V

y

=

w

2

V

p

w

3

w

4

w

1

w

2

=

X

,

Y

w

3

w

4

X

,

Y

oleObject7.bin

ROBOT LOGIC
CONTROLLER

TRANSFORMATION BLOCK

WHEEL PIDs

MOTOR MODELS

ROBOT POSITION

Vx w1
Vy = w2
Vp w3
 w4

X, Y

w1
 w2 = X, Y
w3
w4

image67.emf

image68.emf

p1

p4

p2

p3

x1,y1

x4,y4

x2,y2

x3,y3

45

O

53

O

53

O

45

O

oleObject8.bin

p1

p4

p2

p3

x1,y1

x4,y4

x2,y2

x3,y3

45O

53O

53O

45O

image69.emf

0 10 20 30 40 50 60

0

5

10

15

20

25

30

35

40

